该研究优化了顶空固相微萃取-气相色谱双质谱(Headspace Solid Phase Microextraction with Gas Chromatography Coupled to Tandem Mass Spectrometry,HS-SPME-GC-MS/MS)联用技术检测新疆库车小白杏挥发性化合物组成的方法,并基于相对...该研究优化了顶空固相微萃取-气相色谱双质谱(Headspace Solid Phase Microextraction with Gas Chromatography Coupled to Tandem Mass Spectrometry,HS-SPME-GC-MS/MS)联用技术检测新疆库车小白杏挥发性化合物组成的方法,并基于相对香气活性值(Relative Odor Activity Value,ROAV)鉴定其关键性香气物质,对小白杏呈香属性指纹进行分析。结果表明:使用50/30μm聚二乙烯基苯/碳吸附剂/聚二甲基硅氧烷(Divinylbenzene/Carboxen/Polydimethylsiloxane,DVB/CAR/PDMS)的萃取纤维,萃取温度为65℃,萃取时间为50 min时,萃取效率最高。在该条件下,共鉴定出小白杏中含有的46种挥发性物质,其中醇类物质含量最高(34.57%),其次是酯类(33.77%)和醛类物质(24.77%)。ROAV分析表明,β-紫罗兰酮、γ-癸内酯、二氢-β-紫罗兰酮、芳樟醇、月桂烯以及α-紫罗兰酮为关键香气物质(ROAV>1),赋予了小白杏浓郁的果香、花香以及木香。呈香属性指纹分析表明,与吊干杏相比,小白杏的青草香、果香、椰子香、柑橘香以及花香更为强烈,只有木香较弱。该研究确定了新疆库车小白杏中含有的关键香气成分,可为探索具有小白杏风味的产品研发提供参考依据。展开更多
为快速、准确检测小白杏的成熟度,该研究选择七成熟、八成熟、九成熟、十成熟的小白杏样本各120个,采用近红外高光谱成像系统采集样本的高光谱数据,进行去除噪声和剔除界外样本处理。然后使用均值中心化(mean centering,MC)、Savitzky-G...为快速、准确检测小白杏的成熟度,该研究选择七成熟、八成熟、九成熟、十成熟的小白杏样本各120个,采用近红外高光谱成像系统采集样本的高光谱数据,进行去除噪声和剔除界外样本处理。然后使用均值中心化(mean centering,MC)、Savitzky-Golay卷积求导法(Savitzky-Golay derivative,S-G)、多元散射校正(multiplicative scatter correction,MSC)、标准正态变量变换(standard normal variate transformation,SNV)、归一化法5种方法分别对全波段和特征波段光谱进行预处理,采用光谱-理化值共生距离算法(sample set partitioning based on joint x-y distance,SPXY)、K-S法(Kennard-stone,K-S)、双向算法(Duplex)、交叉验证法、随机法将样本划分为校正集和验证集。最后用极限学习机(extreme learning machine,ELM)、支持向量机(support vector machine,SVM)、偏最小二乘法(partial least squares,PLS)、K最邻近法(K-nearest neighbor,KNN)、贝叶斯判别法建立不同的分类判别模型,比较各模型的识别率。结果表明,对小白杏成熟度定性判别模型,有以下最优组合:全波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+S-G/MSC/归一化/SNV+随机法+贝叶斯、全波段+S-G+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS、特征波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN/贝叶斯、特征波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS。展开更多
文摘该研究优化了顶空固相微萃取-气相色谱双质谱(Headspace Solid Phase Microextraction with Gas Chromatography Coupled to Tandem Mass Spectrometry,HS-SPME-GC-MS/MS)联用技术检测新疆库车小白杏挥发性化合物组成的方法,并基于相对香气活性值(Relative Odor Activity Value,ROAV)鉴定其关键性香气物质,对小白杏呈香属性指纹进行分析。结果表明:使用50/30μm聚二乙烯基苯/碳吸附剂/聚二甲基硅氧烷(Divinylbenzene/Carboxen/Polydimethylsiloxane,DVB/CAR/PDMS)的萃取纤维,萃取温度为65℃,萃取时间为50 min时,萃取效率最高。在该条件下,共鉴定出小白杏中含有的46种挥发性物质,其中醇类物质含量最高(34.57%),其次是酯类(33.77%)和醛类物质(24.77%)。ROAV分析表明,β-紫罗兰酮、γ-癸内酯、二氢-β-紫罗兰酮、芳樟醇、月桂烯以及α-紫罗兰酮为关键香气物质(ROAV>1),赋予了小白杏浓郁的果香、花香以及木香。呈香属性指纹分析表明,与吊干杏相比,小白杏的青草香、果香、椰子香、柑橘香以及花香更为强烈,只有木香较弱。该研究确定了新疆库车小白杏中含有的关键香气成分,可为探索具有小白杏风味的产品研发提供参考依据。
文摘为快速、准确检测小白杏的成熟度,该研究选择七成熟、八成熟、九成熟、十成熟的小白杏样本各120个,采用近红外高光谱成像系统采集样本的高光谱数据,进行去除噪声和剔除界外样本处理。然后使用均值中心化(mean centering,MC)、Savitzky-Golay卷积求导法(Savitzky-Golay derivative,S-G)、多元散射校正(multiplicative scatter correction,MSC)、标准正态变量变换(standard normal variate transformation,SNV)、归一化法5种方法分别对全波段和特征波段光谱进行预处理,采用光谱-理化值共生距离算法(sample set partitioning based on joint x-y distance,SPXY)、K-S法(Kennard-stone,K-S)、双向算法(Duplex)、交叉验证法、随机法将样本划分为校正集和验证集。最后用极限学习机(extreme learning machine,ELM)、支持向量机(support vector machine,SVM)、偏最小二乘法(partial least squares,PLS)、K最邻近法(K-nearest neighbor,KNN)、贝叶斯判别法建立不同的分类判别模型,比较各模型的识别率。结果表明,对小白杏成熟度定性判别模型,有以下最优组合:全波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+S-G/MSC/归一化/SNV+随机法+贝叶斯、全波段+S-G+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS、特征波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN/贝叶斯、特征波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS。