针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方...针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。展开更多
为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解...为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。展开更多
文摘针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。
文摘为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。