期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
陆上风电钢混组合结构塔架风致疲劳寿命识别方法
1
作者 徐江涛 师振贵 黄赐荣 《石油化工设备技术》 CAS 2024年第4期30-34,I0002,共6页
风致疲劳是长期积累的过程,单个风荷载事件可能不会导致结构的立即破坏,且不同材料和构件之间的相互作用、应力集中、局部应力等影响塔架受力关系,难以分析不同方向上的空气荷载力,因此,对疲劳寿命的识别精度不佳。对此,提出陆上风电钢... 风致疲劳是长期积累的过程,单个风荷载事件可能不会导致结构的立即破坏,且不同材料和构件之间的相互作用、应力集中、局部应力等影响塔架受力关系,难以分析不同方向上的空气荷载力,因此,对疲劳寿命的识别精度不佳。对此,提出陆上风电钢混组合结构塔架风致疲劳寿命识别方法。利用SESAM/GeniE模块,将实际结构转化为有限元模型,计算出塔架结构不同方向上的空气动力荷载,并将其进行组合,即可得到综合荷载值;通过分析塔架外力荷载与疲劳寿命之间的关系,累加综合损伤值,即可得到塔架的风致疲劳寿命的识别结果。实验结果表明,采用文中所述识别方法对风电钢混组合结构塔架疲劳寿命进行识别时,随着风速的不断提高,相同节点处的塔架疲劳损伤量也有所变化,识别结果与实际情况之间的应力响应均方根较低,说明该方法具备较高的识别精度。 展开更多
关键词 风电钢混组合结构 塔架 风致疲劳 寿命识别 空气荷载力
下载PDF
基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法 被引量:11
2
作者 董绍江 裴雪武 +4 位作者 汤宝平 田科位 朱朋 李洋 赵兴新 《机械工程学报》 EI CAS CSCD 北大核心 2021年第15期105-115,共11页
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方... 针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。 展开更多
关键词 特征噪声能量比 滚动轴承性能退化评估 早期故障检测 改进深度残差收缩网络 寿命状态识别
原文传递
基于性能衰退评估的轴承寿命状态识别方法研究 被引量:8
3
作者 董绍江 吴文亮 +4 位作者 贺坤 潘雪娇 蒙志强 汤宝平 赵兴新 《振动与冲击》 EI CSCD 北大核心 2021年第5期186-192,210,共8页
针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种基于性能衰退评估的轴承寿命状态识别新方法,该方法基于卷积自编码器(convolutional autoencoder,CAE)与多维尺度分析(multidimensional scaling,MDS)算法构建轴承性能... 针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种基于性能衰退评估的轴承寿命状态识别新方法,该方法基于卷积自编码器(convolutional autoencoder,CAE)与多维尺度分析(multidimensional scaling,MDS)算法构建轴承性能衰退指标,再根据构建指标和改进卷积神经网络(convolutional neural network,CNN)建立轴承寿命状态识别模型,实现轴承寿命状态识别。将轴承信号样本输入CAE,实现轴承寿命状态特征的自动提取与表达,再将所提取的特征通过MDS算法进行约简获得低维特征,在低维特征空间构造欧氏距离作为轴承性能衰退指标,依据指标实现轴承数据标签化。使用标签化的轴承数据训练CNN,建立轴承寿命状态识别模型。在训练过程中,为抑制过拟合,对原始训练样本进行加噪处理,为提高模型抗干扰能力,将Leaky ReLU(LReLU)函数和dropout作为激活函数。运用轴承全寿命试验数据对识别模型进行检验,通过对比验证,结果表明所提出的轴承寿命状态识别方法能更准确的实现轴承寿命状态识别。 展开更多
关键词 寿命状态识别 性能衰退指标 卷积自编码器 MDS算法 改进卷积神经网络
下载PDF
基于核极限学习机自编码器的转盘轴承寿命状态识别 被引量:5
4
作者 潘裕斌 王华 +1 位作者 陈捷 洪荣晶 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期1856-1866,共11页
针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向... 针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向量,并将其组成高维特征集.采用堆叠多层核极限学习机自编码器(MLKELM-AE),从高维特征集中提取最能反映转盘轴承的寿命状态信息,输入核极限学习机(KELM)模型进行寿命状态识别.在MLKELM-AE学习训练中,采用新的飞蛾扑火算法(MFO)优化惩罚系数和核参数,提高MLKELM-AE的特征识别能力.转盘轴承加速寿命实验表明,MLKELM-AE比多层极限学习机自编码器(MLELMAE)、单层极限学习机(ELM)、KELM的识别精度高,多传感器、多领域特征能够全面反映转盘轴承的寿命状态. 展开更多
关键词 低速重载转盘轴承 多层核极限学习机自编码器(MLKELM-AE) 飞蛾扑火算法(MFO) 寿命状态识别 多领域特征
下载PDF
多分类器集成加权均衡分布适配的滚动轴承寿命阶段识别 被引量:5
5
作者 陈仁祥 吴昊年 +2 位作者 杨黎霞 唐林林 徐向阳 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期66-73,共8页
针对不同工况下样本有限不平衡造成滚动轴承寿命阶段识别中少数类样本无法被有效识别的问题,提出了多分类器集成加权均衡分布适配的滚动轴承寿命阶段识别方法。首先,采用随机抽样的方式获得源域多样本训练集,为目标域预测伪标签的同时... 针对不同工况下样本有限不平衡造成滚动轴承寿命阶段识别中少数类样本无法被有效识别的问题,提出了多分类器集成加权均衡分布适配的滚动轴承寿命阶段识别方法。首先,采用随机抽样的方式获得源域多样本训练集,为目标域预测伪标签的同时赋予样本不同的初始权重,充分训练少数类样本;然后,在再生核希尔伯特空间训练各源域样本集的分类器,并通过迭代的方式优化伪标签、更新权重矩阵;最后,通过多分类器集成策略将合适的基分类器集成为强分类器,以获得最终识别结果。结合F-score评价标准,使用宏平均与微平均评价指标对多分类任务进行评价避免了准确率对识别结果的误导。在两组滚动轴承寿命阶段数据集上进行实验验证,证明了所提方法的可行性和有效性。 展开更多
关键词 样本有限不平衡 滚动轴承 寿命阶段识别 多分类器集成
下载PDF
基于改进模糊C均值的回转支承寿命状态识别 被引量:4
6
作者 李媛媛 陈捷 +1 位作者 黄筱调 洪荣晶 《计算机集成制造系统》 EI CSCD 北大核心 2018年第11期2751-2758,共8页
为了对回转支承的寿命状态进行研究,以保障机械设备的高效正常运行,提出一种将点密度和模糊C均值结合的算法对回转支承的寿命状态进行识别,解决了传统模糊C均值算法识别速度慢、临界点分类不准确的问题。利用自主研发的回转支承综合性... 为了对回转支承的寿命状态进行研究,以保障机械设备的高效正常运行,提出一种将点密度和模糊C均值结合的算法对回转支承的寿命状态进行识别,解决了传统模糊C均值算法识别速度慢、临界点分类不准确的问题。利用自主研发的回转支承综合性能实验台对某型号回转支承进行全寿命疲劳实验,验证了所提算法的可行性。通过对比所提改进算法与传统模糊C均值算法的识别结果,表明改进算法能够更准确地识别出回转支承的不同运行状态,从而为实时维修奠定了基础。 展开更多
关键词 回转支承 寿命状态识别 模糊C均值 性能退化 故障诊断
下载PDF
基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别
7
作者 刘峰良 李锋 +2 位作者 汤宝平 汪永超 田大庆 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第1期256-266,共11页
针对变工况条件下因样本数据分布差异大、可训练用样本较少以及不同寿命阶段样本数量不均等造成的空间滚动轴承寿命阶段识别准确率较低的问题,提出一种无监督迁移学习方法--类对比簇分配异构迁移学习(CAHTL)。在CAHTL中,通过异构迁移学... 针对变工况条件下因样本数据分布差异大、可训练用样本较少以及不同寿命阶段样本数量不均等造成的空间滚动轴承寿命阶段识别准确率较低的问题,提出一种无监督迁移学习方法--类对比簇分配异构迁移学习(CAHTL)。在CAHTL中,通过异构迁移学习将历史工况下少量有类标签样本和当前工况的无类标签样本(即待测样本)迁移到公共特征空间内,使得不同工况样本之间的分布差异最小化;利用源域聚类簇点构建目标域样本特征的正负样本实现两域样本的数量再分配,再对两域正负样本进行对比学习以使待测样本分类性更好;通过计算待测样本与聚类簇点的相似度完成待测样本分类,且该分类过程无需参数学习,因此可避免样本不均等情况下对于不同寿命阶段样本识别准确率差距过大和在少有类标签训练样本情况下网络出现过拟合的问题;利用随机梯度下降和动量更新对CAHTL参数进行不同步更新,以保持样本特征的一致性并提高CAHTL的收敛速度。CAHTL可利用空间滚动轴承历史工况下的少量、非均等的已知寿命阶段的训练样本对当前工况的待测样本进行较高精度的寿命阶段识别。空间滚动轴承寿命阶段识别实例验证了该方法的有效性。 展开更多
关键词 迁移学习 对比学习 动量更新 空间滚动轴承 寿命阶段识别
下载PDF
基于信息融合的滚动轴承寿命状态识别研究 被引量:4
8
作者 蒙志强 董绍江 +4 位作者 潘雪娇 赵兴新 孙世政 吴文亮 饶志荣 《组合机床与自动化加工技术》 北大核心 2020年第3期41-44,共4页
针对滚动轴承寿命状态识别过程中,单一传感器蕴含的信息不能全面反映寿命状态的问题,文章提出了一种基于信息融合的滚动轴承寿命状态识别方法。该方法首先采用多路卷积层提取不同传感器的数据特征信息,克服单一信息源的局限性;然后采用... 针对滚动轴承寿命状态识别过程中,单一传感器蕴含的信息不能全面反映寿命状态的问题,文章提出了一种基于信息融合的滚动轴承寿命状态识别方法。该方法首先采用多路卷积层提取不同传感器的数据特征信息,克服单一信息源的局限性;然后采用多层卷积、池化交替级联的方式,实现多源信息的特征值深度融合,最后采用全连接和多分类函数,实现动轴承的寿命状态识别。通过不同方法的对比实验,结果表明了所提方法能够提高滚动轴承寿命状态识别率,具有较好的可行性。 展开更多
关键词 滚动轴承 寿命状态识别 信息融合 卷积神经网络
下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别
9
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
下载PDF
基于改进DBN的回转支承寿命状态识别 被引量:3
10
作者 王赛赛 陈捷 +1 位作者 王华 潘裕斌 《振动与冲击》 EI CSCD 北大核心 2020年第7期238-244,259,共8页
为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解... 为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。 展开更多
关键词 回转支承 深度学习 改进DBN 寿命状态识别
下载PDF
改进均衡分布适配的滚动轴承寿命阶段识别 被引量:2
11
作者 吴昊年 陈仁祥 +3 位作者 胡小林 张霞 张焱 唐林林 《振动工程学报》 EI CSCD 北大核心 2021年第1期194-201,共8页
针对不同工况下训练样本与测试样本分布差异导致滚动轴承寿命阶段无法被有效识别的问题,提出改进均衡分布适配的滚动轴承寿命阶段识别方法。采用无重复均匀随机抽样对源域类间样本进行多次均匀随机抽样,得到源域多样本训练集,以减小源... 针对不同工况下训练样本与测试样本分布差异导致滚动轴承寿命阶段无法被有效识别的问题,提出改进均衡分布适配的滚动轴承寿命阶段识别方法。采用无重复均匀随机抽样对源域类间样本进行多次均匀随机抽样,得到源域多样本训练集,以减小源域内部样本选择对目标域预测标签的影响;在再生核希尔伯特空间上利用平衡因子μ动态调节边缘分布和条件分布所占权值,并通过迭代的方式不断优化目标域伪标签以减小两域的最大均值差异;利用源域多样本数据集各自的映射矩阵构造多个分类器,经过一致性判别得到目标域样本最终识别结果。在两组滚动轴承寿命阶段数据集上进行实验验证,证明了所提方法的可行性和有效性。 展开更多
关键词 故障诊断 滚动轴承 寿命阶段识别 条件概率分布 边缘分布
下载PDF
基于粒子群优化支持向量机的回转支承寿命状态识别 被引量:2
12
作者 陆超 陈捷 +1 位作者 洪荣晶 封杨 《南京工业大学学报(自然科学版)》 CAS 北大核心 2016年第1期56-61,67,共7页
回转支承已在工程机械和风力发电等方面得到广泛应用。为了对其健康状态作出正确判断,采用经粒子群算法优化的支持向量机模型来对其寿命状态做出准确识别。寿命状态识别的关键问题是特征向量的提取。为了得到有效而又全面的寿命状态信息... 回转支承已在工程机械和风力发电等方面得到广泛应用。为了对其健康状态作出正确判断,采用经粒子群算法优化的支持向量机模型来对其寿命状态做出准确识别。寿命状态识别的关键问题是特征向量的提取。为了得到有效而又全面的寿命状态信息,从时域和时频域方面提取多个特征向量进行综合分析,从而实现了小样本数据下信息的最大挖掘。最后以回转史承全寿命实验对该方法进行检验,结果表明,该模型的效果优于传统的支持向量机以及单变量模型,具有实际工程应用价值。 展开更多
关键词 回转支承 支持向量机 粒子群 寿命状态识别
下载PDF
源域多样本集成GFK的不同工况下滚动轴承寿命状态识别 被引量:2
13
作者 陈仁祥 陈思杨 +3 位作者 胡小林 董绍江 黄鑫 朱炬锟 《振动工程学报》 EI CSCD 北大核心 2020年第3期614-621,共8页
针对不同工况下滚动轴承寿命状态识别时训练样本与测试样本分布差异导致寿命状态无法有效识别的问题,提出基于源域多样本集成(Geodesic Flow Kernel,GFK)的滚动轴承寿命状态识别方法。首先,采用无重复均匀随机抽样对源域类间样本进行多... 针对不同工况下滚动轴承寿命状态识别时训练样本与测试样本分布差异导致寿命状态无法有效识别的问题,提出基于源域多样本集成(Geodesic Flow Kernel,GFK)的滚动轴承寿命状态识别方法。首先,采用无重复均匀随机抽样对源域类间样本进行多次等量随机抽样得到源域内部多个训练样本以充分挖掘源域样本信息;其次,将源域内部多个训练样本和目标域测试样本输入GFK,分别计算每个源域训练样本与目标域测试样本的测地线核矩阵以充分利用源域样本信息并提升GFK迁移学习能力;最后,利用核矩阵构造核分类器并输出分类结果,采用一致性投票对所有源域训练样本下目标域测试样本的分类结果进行集成以提升目标域测试样本的识别准确率。不同工况下滚动轴承寿命状态识别实验验证了所提方法的可行性和有效性。 展开更多
关键词 寿命状态识别 滚动轴承 测地线流式核 迁移学习
下载PDF
模型无关元迁移学习用于空间滚动轴承寿命阶段识别
14
作者 李统一 李锋 +1 位作者 汤宝平 汪永超 《振动工程学报》 EI CSCD 北大核心 2023年第5期1457-1468,共12页
针对变工况下空间滚动轴承寿命阶段识别时因样本分布差异较大、可训练用寿命阶段样本较少以及不同寿命阶段样本数量不均等所造成的寿命阶段识别准确率较低的问题,提出模型无关元迁移学习(Model-Agnostic Meta-TransferLearning,MAMTL)... 针对变工况下空间滚动轴承寿命阶段识别时因样本分布差异较大、可训练用寿命阶段样本较少以及不同寿命阶段样本数量不均等所造成的寿命阶段识别准确率较低的问题,提出模型无关元迁移学习(Model-Agnostic Meta-TransferLearning,MAMTL)用于空间滚动轴承寿命阶段识别。在MAMTL中,将模型无关元学习和迁移学习相结合以实现多任务同步平行训练从而代替传统的迭代训练,多个任务损失函数利用不同工况下无类标签样本和历史工况下少量有类标签样本共同更新MAMTL网络参数,以寻求网络参数的全局最优解,这使MAMTL具有更好的泛化能力,因此MAMTL在较少历史工况有类标签训练样本情况下比传统迁移学习具有更好的域适配性;在MAMTL中构建新型原型网络以将历史工况每一类别的样本表示为一个原型,通过计算当前工况待测样本与原型的相似度完成当前工况待测样本分类,且该分类过程无需参数学习,因此可防止样本不均等情况下对于不同类别样本识别精度差距较大和在少量有类标签训练样本情况下网络出现过拟合的问题,从而更好提高分类精度。MAMTL的以上优势使得它可利用空间滚动轴承历史工况下的少量、非均等已知寿命阶段的训练样本对当前工况待测样本进行较高精度的寿命阶段识别。空间滚动轴承寿命阶段识别实例验证了该方法的有效性。 展开更多
关键词 寿命阶段识别 空间滚动轴承 原型网络 元学习 迁移学习
下载PDF
基于HTMFDE以及ICNN的滚动轴承寿命状态识别方法
15
作者 董绍江 刘文龙 +2 位作者 方能炜 胡小林 余腾伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期723-734,共12页
针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积... 针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积神经网络(Improved convolution neural network,ICNN)的轴承寿命状态识别新方法。首先,在传统多尺度波动散布熵的基础上,将传统均值粗粒化过程替换为改进的时移粗粒化过程,以解决传统均值粗粒化导致信号幅值特征丢失的问题。同时引入层次分解理论,克服多尺度分析方法不能全面提取不同频段故障特征的不足,得到最终的HTMFDE。之后利用HTMFDE方法提取滚动轴承信号的多维状态特征量,并进行归一化形成一组概率分布,计算轴承正常信号与故障信号之间的JRD距离作为性能退化指标。其次,根据构建的JRD性能退化曲线,划分轴承寿命状态并制作数据集,通过标签化的样本训练具有双层多尺度特征提取层的卷积神经网络,建立滚动轴承寿命状态识别模型。为了加快模型的收敛速度,对每层卷积进行批量归一化操作,同时采用全局池化代替全连接层以提升模型的训练效率。最后,在2组不同的轴承数据集上进行实验。实验结果表明,根据HTMFDE构建的JRD性能退化曲线能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的ICNN模型在SNR=0~10 dB环境中平均识别正确率为98.5%,能够准确地识别轴承寿命状态,验证了所提方法的实用性以及有效性。 展开更多
关键词 寿命状态识别 滚动轴承 层次时移多尺度波动散布熵 JRD距离 改进卷积神经网络
下载PDF
基于双尺度柔性原型迁移网络的空间滚动轴承寿命阶段识别
16
作者 王腾 李锋 +1 位作者 罗玲 汤宝平 《机械工程学报》 EI CAS CSCD 北大核心 2022年第21期114-125,共12页
针对变工况条件下样本分布差异较大、不同寿命阶段样本数量不均衡导致现有空间滚动轴承寿命阶段识别方法的寿命阶段识别精度较低问题,提出基于双尺度柔性原型迁移网络(Dual scale flexible prototype transfer network,DSFPTN)的空间滚... 针对变工况条件下样本分布差异较大、不同寿命阶段样本数量不均衡导致现有空间滚动轴承寿命阶段识别方法的寿命阶段识别精度较低问题,提出基于双尺度柔性原型迁移网络(Dual scale flexible prototype transfer network,DSFPTN)的空间滚动轴承寿命阶段识别方法。在所提出的DSFPTN中,构造双尺度柔性域感知模块并将其嵌入特征提取器来增强特征提取器对不同领域私有特征的探索能力,提高特征提取器对空间滚动轴承源域和目标域样本特征的学习能力;设计同域泛原型学习以防止跨域样本不加区分的特征学习和不正确聚类,增加两域异类样本的区分性;构建两域原型迁移机制来获得域不变原型,实现从源域原型到目标域原型的迁移;利用加载域不变原型后的双分类器对齐两域之间的分布并计算目标域待测样本与域不变原型之间相似度完成对空间滚动轴承目标域待测样本分类,该分类方式在不同寿命阶段样本数量不均衡条件下能提高对各寿命阶段样本的识别精度。地面模拟空间环境下空间滚动轴承寿命阶段识别实例验证所提出的基于DSFPTN的寿命阶段识别方法的有效性。总之,构建双尺度柔性域感知模块、同域泛原型、两域原型迁移机制和加载域不变原型的双分类器使得DSFPTN在样本分布差异较大以及不同寿命阶段样本数量不均衡条件下,仅利用空间滚动轴承源域的非均衡有标签样本就能对目标域待测样本进行较高精度的寿命阶段识别。 展开更多
关键词 空间滚动轴承 寿命阶段识别 双尺度柔性域感知模块 同域泛原型学习 两域原型迁移 双分类器
原文传递
基于遗传程序设计的回转支承寿命状态识别
17
作者 李媛媛 黄筱调 +1 位作者 陈捷 洪荣晶 《南京工业大学学报(自然科学版)》 北大核心 2017年第6期111-117,共7页
针对回转支承低转速、故障信号微弱的特点,提出了一种遗传程序(GP)设计的方法对其寿命状态进行准确的识别。为保证回转支承运转信息的完整性,该方法从不同领域提取了多个特征指标组成特征向量矩阵。以模型的性能和复杂度为衡量指标,从... 针对回转支承低转速、故障信号微弱的特点,提出了一种遗传程序(GP)设计的方法对其寿命状态进行准确的识别。为保证回转支承运转信息的完整性,该方法从不同领域提取了多个特征指标组成特征向量矩阵。以模型的性能和复杂度为衡量指标,从遗传程序设计建立的模型中选择出最佳模型,再将测试样本输入模型实现对回转支承寿命状态的识别。利用自主研发的回转支承综合性能实验台对某型号的回转支承进行了全寿命疲劳实验,实验结果表明,所提出的方法能够准确地识别出回转支承的寿命状态,为实时维修奠定了基础。 展开更多
关键词 回转支承 遗传程序设计 寿命状态识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部