期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
船舶辐射噪声分类卷积神经网络的可视化分析和卷积核剪枝
1
作者 徐源超 蔡志明 +1 位作者 孔晓鹏 黄炎 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期74-82,共9页
当前基于深度神经网络的船舶辐射噪声分类研究主要关注分类性能,对模型的解释性关注较少。本文首先采用导向反向传播和输入空间优化,基于DeepShip数据集,构建以对数谱为输入的船舶辐射噪声分类卷积神经网络(CNN),提出了一种船舶辐射噪... 当前基于深度神经网络的船舶辐射噪声分类研究主要关注分类性能,对模型的解释性关注较少。本文首先采用导向反向传播和输入空间优化,基于DeepShip数据集,构建以对数谱为输入的船舶辐射噪声分类卷积神经网络(CNN),提出了一种船舶辐射噪声分类CNN的可视化分析方法。结果显示,多帧特征对齐算法改进了可视化效果,深层卷积核检测线谱和背景两类特征。其次,基于线谱是船舶分类的稳健特征这一知识,提出了一种卷积核剪枝方法,不仅提升了CNN分类性能,且训练过程更加稳定。导向反向传播可视化结果表明,卷积核剪枝后的CNN更加关注线谱信息。 展开更多
关键词 船舶辐射噪声分类 卷积神经网络 可视化分析 神经网络剪枝 导向反向传播
下载PDF
基于深度学习的DRFM信号识别
2
作者 房津辉 宋宝军 朱明哲 《现代雷达》 CSCD 北大核心 2024年第3期54-58,共5页
针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处... 针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处理中无法有效区分回波信号和DRFM欺骗信号以及在雷达干扰识别中基于DRFM的欺骗干扰难以识别的问题。为了验证深度学习过程的可靠性,通过神经网络可解释性算法对训练结果进行了验证和分析。实验结果表明,相比于识别原始信号,识别DRFM信号神经网络需要用到更多的特征,神经网络判断准确率达到了96.33%,识别精度良好。 展开更多
关键词 干扰识别 时频变换 梯度加权类激活映射 导向反向传播 深度学习
下载PDF
基于人工图像数据扩充的输电线路绝缘子识别 被引量:2
3
作者 王亚茹 杨凯 +3 位作者 翟永杰 郭聪彬 赵文清 苏杰 《系统仿真学报》 CAS CSCD 北大核心 2022年第11期2337-2347,共11页
深度学习方法在计算机视觉领域发展迅速,但依赖于海量训练数据。输电线路绝缘子自动识别任务中,航拍图像数量不足、多样性差等问题影响识别的准确性。提出人工绝缘子图像数据扩充方法,通过3D建模创建人工绝缘子图像,并构建导向反向补偿... 深度学习方法在计算机视觉领域发展迅速,但依赖于海量训练数据。输电线路绝缘子自动识别任务中,航拍图像数量不足、多样性差等问题影响识别的准确性。提出人工绝缘子图像数据扩充方法,通过3D建模创建人工绝缘子图像,并构建导向反向补偿网络,对创建的人工图像进行补偿优化,用补偿后的人工图像扩充航拍绝缘子图像数据集。在多个典型卷积神经网络上进行绝缘子识别对比实验,结果显示:所提方法使绝缘子识别准确率平均提升2.1%,且网络相对轻量级,验证了所提方法的有效性和优势。 展开更多
关键词 人工图像 数据扩充 绝缘子 导向反向传播 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部