期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于小波网络的次日太阳逐时总辐射预测技术研究 被引量:11
1
作者 林星春 曹家枞 刘春雁 《能源技术》 2007年第2期70-75,共6页
现有的地面太阳逐时总辐射预测模型的预测精度及泛化能力尚不能令人满意。利用小波神经网络在提升非线性函数影射能力方面的优势,以及递归网络的优良的动态性能,建立了对角递归小波BP网络(DRWBPN)模型,用以对次日地面太阳逐时总辐射进... 现有的地面太阳逐时总辐射预测模型的预测精度及泛化能力尚不能令人满意。利用小波神经网络在提升非线性函数影射能力方面的优势,以及递归网络的优良的动态性能,建立了对角递归小波BP网络(DRWBPN)模型,用以对次日地面太阳逐时总辐射进行精确预测。进一步提高预测精度的措施还包括将ASHRAE太阳辐射确定性模型的计算结果和经模糊化处理的气象预报中的云量信息加入到网络输入向量中,以充分利用已知可靠信息。采用分阶段训练网络的方法,提高了有限次数下的训练质量。太阳逐时总辐射预测实例及与其它典型模型预测结果的比较表明,提出的地面太阳逐时总辐射预测模型具有更高精度和实际可行性。 展开更多
关键词 太阳逐时总辐射 预测 对角递归小波bp网络 模糊技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部