期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用两阶段策略模型(KTSVM)的P2P流量识别方法 被引量:8
1
作者 丁要军 蔡皖东 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第2期45-50,129,共7页
针对识别加密P2P网络流量比较困难的问题,提出一种基于K均值和直推式支持向量机(TSVM)的半监督学习模型———两阶段策略模型(KTSVM,k-means based transductive supportvector machine),以提高P2P流量的识别精度.该模型首先使用K均值... 针对识别加密P2P网络流量比较困难的问题,提出一种基于K均值和直推式支持向量机(TSVM)的半监督学习模型———两阶段策略模型(KTSVM,k-means based transductive supportvector machine),以提高P2P流量的识别精度.该模型首先使用K均值半监督聚类算法计算训练集中正例样本的数目,然后根据正例样本的数目来训练TSVM分类模型,提高了TSVM模型的稳定性和准确性.该模型的优势是可以使用未标注样本和标注样本共同训练分类模型,非常适合于识别标注比较困难的P2P流量.实验结果表明,在标注样本较少的情况下,该模型的识别精度和稳定性均优于TSVM模型和SVM模型. 展开更多
关键词 直推式支持向量机 半监督学习 流量识别 对等网络流量 互联网
下载PDF
基于AdaBoost-SVM的P2P流量识别方法 被引量:1
2
作者 刘悦 李雪 《火力与指挥控制》 CSCD 北大核心 2016年第5期15-18,共4页
针对传统的P2P流量识别技术存在识别率低和误判率高的缺点,将机器学习中Ada Boost算法的良好分类能力和SVM的泛化能力结合起来,提出一种基于Ada Boost-SVM组合算法的P2P网络流量识别模型,将SVM作为Ada Boost的基分类器,运用最小近邻法... 针对传统的P2P流量识别技术存在识别率低和误判率高的缺点,将机器学习中Ada Boost算法的良好分类能力和SVM的泛化能力结合起来,提出一种基于Ada Boost-SVM组合算法的P2P网络流量识别模型,将SVM作为Ada Boost的基分类器,运用最小近邻法计算支持向量与训练集的样本间的距离实现分类进行P2P流量识别。最后,以4种P2P流量数据为研究对象在MATLAB上进行仿真,仿真结果表明,提出的Ada Boost-SVM的组合算法在P2P网络流量的分类性能和分类准确率上都优于单纯的Ada Boost和SVM,组合算法的P2P流量平均识别率高达98.7%,远高于Ada Boost和SVM的识别率。 展开更多
关键词 对等网络流量 支持向量机 分类器 分类能力 泛化能力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部