期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
计算Henon方程多个正解的分歧方法 被引量:4
1
作者 杨忠华 李昭祥 朱海龙 《中国科学(A辑)》 CSCD 北大核心 2007年第12期1417-1428,共12页
首先应用分歧方法给出计算Henon方程边值问题D_4对称正解的3种算法,然后以Henon方程中的参数r为分歧参数,在D_4对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其他具有不同对称性质的正解.
关键词 HENON方程 对称分歧 多解 扩张系统 解枝转接 拟弧长延拓
原文传递
D_6等变非线性分歧问题的计算 被引量:1
2
作者 杨忠华 周尉 《应用数学与计算数学学报》 2000年第2期1-13,共13页
本文研究D6对称群的分歧子群的分类,由此得到相应对称破缺分歧的计算方法,并应用到D6等变的Brusselator反应问题.
关键词 D6等变 对称 对称分歧 扩张系统 非线性常微分方程
下载PDF
计算圆域上p-Henon方程边值问题多个正解的分歧方法 被引量:2
3
作者 李昭祥 杨忠华 《应用数学和力学》 CSCD 北大核心 2010年第4期481-490,共10页
首先应用分歧方法给出计算p-Henon方程边值问题O(2)对称正解的算法,然后以p-Henon方程中的参数l为分歧参数,在O(2)对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词 p-Henon方程 对称分歧 多解 扩张系统 解枝转接
下载PDF
正方形上p-Henon方程多个正解的计算 被引量:1
4
作者 李昭祥 杨忠华 朱海龙 《数值计算与计算机应用》 CSCD 北大核心 2010年第3期161-171,共11页
本文首先给出计算正方形上p-Henon方程边值问题D_4对称正解的算法,然后以参数r为分歧参数,在D4对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词 ρ-Henon方程 对称分歧 多解 扩张系统 解枝转接
原文传递
正方形区域上Chandrasekhar方程D_4对称正解的计算
5
作者 奚小娟 宋媛媛 杨忠华 《上海师范大学学报(自然科学版)》 2007年第6期13-16,共4页
运用Liapunov-Schmidt约化和对称破缺分歧的方法,计算了正方形区域上Chan-drasekhar方程边值问题的D4对称的正解.
关键词 Chandrasekhar方程 Liapunov—Schmidt约化 对称分歧 D4对称正解
下载PDF
计算立方体上Henon方程多个正解的分歧方法
6
作者 李昭祥 杨忠华 《计算数学》 CSCD 北大核心 2012年第2期113-124,共12页
本文首先应用分歧方法给出计算立方体上Henon方程边值问题D_4(3)对称正解的三种算法,然后以Henon方程中的参数r为分歧参数,在D_4(3)对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词 HENON方程 对称分歧 多解 扩张系统 解枝转接
原文传递
二重高阶对称破缺分歧点和它们的数值确定
7
作者 杨忠华 叶瑞松 《应用数学和力学》 EI CSCD 北大核心 1996年第7期601-612,共12页
本文考虑带Z2×Z2对称性的两参数非线性的二重高阶对称破缺分歧点.利用对称性,我们提出了相应的正则扩张系统来确定这类分歧点.同时指出存在两条平方音叉式分歧点的道路通过该点.
关键词 对称分歧 扩张系统 对称 分歧
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部