In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, ...In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.展开更多
We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evoluti...We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.展开更多
In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one ine...In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.展开更多
New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends ...New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.展开更多
In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we app...In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .展开更多
基金Natural Science Foundation of Shandong Province under Grant Nos.2004zx16 and Q2005A01
文摘In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.
基金supported by National Natural Science Foundation of China (Grant Nos.11001240, 10926082)the Natural Science Foundation of Zhejiang Province (Grant Nos. Y6090359, Y6090383)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 10925104)the Natural Science Foundation of Shaanxi Province (Grant No. 2009JQ1003)
文摘In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.
基金supported by the National Natural Science Foundation of China under Grant No. 10671156the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.
文摘In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .