期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOX-s的密集垃圾检测方法 被引量:1
1
作者 谢若冰 李茂军 +1 位作者 李宜伟 胡建文 《计算机工程与应用》 CSCD 北大核心 2024年第5期250-258,共9页
针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得... 针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得网络兼顾全局特征信息和重点特征信息,减少误检现象;在预测输出网络中使用可变形卷积,对初始预测框进行精细化处理,提高定位精度;在EIoU损失的基础上引入加权系数,提出加权IoU-EIoU损失,自适应调整训练时不同阶段不同损失的关注程度,进一步加快训练网络的收敛速度。在公开204类垃圾检测数据集中进行测试,结果表明,所提改进算法的平均精度均值分别可达80.5%和92.5%,优于当前流行目标检测算法,且检测速度快,满足实时性需求。 展开更多
关键词 密集垃圾检测 多头自注意力机制 YOLOX-s 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部