As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to ...As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.展开更多
Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,...Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,liquid-gas ratio,inlet gas flow rate,inlet concentration of SO2 in flue gas,sodium citrate buffer concentration and initial pH of absorption solution,on the SO2 concentration in the absorption solution or removal efficiency of SO2 were examined.Incremental rate of sulfate radical ions in the absorption solution was also examined.Experimental results indicate that the efficiency of this regenerative process will be improved by using RPB under appropriate operating conditions,and the generation of SO2-4 will be restrained in the process in RPB.展开更多
Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse pho...Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse phosphate particles is of great economic and environmental importance for phosphate industry.In this investigation,four different phosphate samples were aquired,characterized and tested in a specially designed laboratory-scale flotation column.Significant recovery improvement of coarse phosphate flotation was achieved using cavitation-generated nanobubble though its effects differ among the four testing phosphate samples.The laboratory-scale flotation column test results indicate that nanobubble increased P_2O_5 recovery by up to 10%~30%for a given Acid Insoluble(A.I.) rejection,depending on the characteristic of phosphate samples.The improvement effect of nanobubble on the hard-to-float particles was more significant than that on easy-to-float particles,especially at lower collector dosages.Nanobubbles reduced the collector dosage by 1/3 to 1/2.Nanobubbles almost doubled the coarse phosphate flotation rate constant and increased the flotation selectivity index by up to 25%.展开更多
A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion cha...A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carded out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOx emis- sions. In the current study, important factors that influence the combustion characteristics and NOx emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800~C in CFB when the primary air is 24% of theo- retical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOx emission concentration is less than 371 mg/m^3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOx concentration is 221 mg/m^3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.展开更多
Elemental mercury(Hg^0)re-emissions from slurries and solutions were evaluated in a lab-scale simulated scrubber.Oxidized mercury(Hg^2 +)standard solution was injected into the simulated scrubber at a desired rat...Elemental mercury(Hg^0)re-emissions from slurries and solutions were evaluated in a lab-scale simulated scrubber.Oxidized mercury(Hg^2 +)standard solution was injected into the simulated scrubber at a desired rate to simulate absorbing and dissolving of Hg^2 +in the flue gas across wet flue gas desulfurization(WFGD)systems. PS analytical mercury analyzer was used to continuously determine Hg0re-emission concentrations in the carrier gas from the scrubber.Sulfite ion in the slurry of CaSO3 was validated to reduce Hg ^2+to Hg^ 0,while no Hg ^0 re-emission occurred from slurries of CaSO4 and CaO.Transitional metal ions with low chemical valence such as Fe^2 +,Pb ^2+,Ni ^2+, AsO2^-and Cu ^+were used to prepare solutions with concentration levels of mmol·L^-1.Reduction reaction of Hg^2 +to Hg 0was observed from these solutions.Reduction capabilities for the different transitional metal ions in the solutions were:Pb^2 +〉Cu ^+〉Fe^ 2+〉 AsO2^-〉Ni ^2+.展开更多
A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferr...A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.展开更多
A process composed of a fixed-bed and a distillation column with a side withdraw, mainly methanol, is developed to hydrolyze methyl acetate (MA) as a typical byproduct in polyvinyl alcohol (PVA) and pure terephthalic ...A process composed of a fixed-bed and a distillation column with a side withdraw, mainly methanol, is developed to hydrolyze methyl acetate (MA) as a typical byproduct in polyvinyl alcohol (PVA) and pure terephthalic acid (PTA) factory. The process is simulated by employing the equilibrium stage model RadFrac and plug flow model Rplug in Aspen Plus. Experiments are also carried out in a lab-scale to evaluate the process. The results show that at the molar ratio of water to methyl acetate about 4.0-5.0 in the feed stream and the volume ratio of distillate to feed MA above a critical value, the side product contains more than 80% (by mass) (MeOH) and less than 2% (by mass) MA, while the bottom contains more than 46% (by mass) acetic acid (HAc) and less than 0.5% (by mass) methanol with almost complete conversion of MA. Compared with the old catalytic distillation process we proposed before, this process can cut down 47.6% energy consumption and a distillation column.展开更多
基金the Tarbiat Modares University (TMU), the Iran Mineral Processing Research Center (IMPRC) and the IMIDRO for the technical assistance and financial support
文摘As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
基金Supported by the National Natural Science Foundation of China (20572128)
文摘Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,liquid-gas ratio,inlet gas flow rate,inlet concentration of SO2 in flue gas,sodium citrate buffer concentration and initial pH of absorption solution,on the SO2 concentration in the absorption solution or removal efficiency of SO2 were examined.Incremental rate of sulfate radical ions in the absorption solution was also examined.Experimental results indicate that the efficiency of this regenerative process will be improved by using RPB under appropriate operating conditions,and the generation of SO2-4 will be restrained in the process in RPB.
基金the Florida Institute of Phosphate Research(FIPR),The Center for Advanced Separation Technologies(CAST) and the National Natural Science Foundation of China (Nos.50921002 and 90510002) for the financial supportCF Industry Inc and Mosaic Company for supplying specimens and ArrMaz Custom Chemicals Inc.for providing chemicals employed in this study.
文摘Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse phosphate particles is of great economic and environmental importance for phosphate industry.In this investigation,four different phosphate samples were aquired,characterized and tested in a specially designed laboratory-scale flotation column.Significant recovery improvement of coarse phosphate flotation was achieved using cavitation-generated nanobubble though its effects differ among the four testing phosphate samples.The laboratory-scale flotation column test results indicate that nanobubble increased P_2O_5 recovery by up to 10%~30%for a given Acid Insoluble(A.I.) rejection,depending on the characteristic of phosphate samples.The improvement effect of nanobubble on the hard-to-float particles was more significant than that on easy-to-float particles,especially at lower collector dosages.Nanobubbles reduced the collector dosage by 1/3 to 1/2.Nanobubbles almost doubled the coarse phosphate flotation rate constant and increased the flotation selectivity index by up to 25%.
基金supported by the National Natural Science Foundation of China(51006103)
文摘A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carded out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOx emis- sions. In the current study, important factors that influence the combustion characteristics and NOx emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800~C in CFB when the primary air is 24% of theo- retical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOx emission concentration is less than 371 mg/m^3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOx concentration is 221 mg/m^3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.
基金Supported by the US Agency for International Development(USAID)cooperation agreement(486-A-00-06-000140-00)
文摘Elemental mercury(Hg^0)re-emissions from slurries and solutions were evaluated in a lab-scale simulated scrubber.Oxidized mercury(Hg^2 +)standard solution was injected into the simulated scrubber at a desired rate to simulate absorbing and dissolving of Hg^2 +in the flue gas across wet flue gas desulfurization(WFGD)systems. PS analytical mercury analyzer was used to continuously determine Hg0re-emission concentrations in the carrier gas from the scrubber.Sulfite ion in the slurry of CaSO3 was validated to reduce Hg ^2+to Hg^ 0,while no Hg ^0 re-emission occurred from slurries of CaSO4 and CaO.Transitional metal ions with low chemical valence such as Fe^2 +,Pb ^2+,Ni ^2+, AsO2^-and Cu ^+were used to prepare solutions with concentration levels of mmol·L^-1.Reduction reaction of Hg^2 +to Hg 0was observed from these solutions.Reduction capabilities for the different transitional metal ions in the solutions were:Pb^2 +〉Cu ^+〉Fe^ 2+〉 AsO2^-〉Ni ^2+.
基金Project(201209013)supported by Special Fund for Environmental Scientific Research in the Public Interest,China
文摘A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.
基金Supported by the National Torch Program of China (2007HG560031)
文摘A process composed of a fixed-bed and a distillation column with a side withdraw, mainly methanol, is developed to hydrolyze methyl acetate (MA) as a typical byproduct in polyvinyl alcohol (PVA) and pure terephthalic acid (PTA) factory. The process is simulated by employing the equilibrium stage model RadFrac and plug flow model Rplug in Aspen Plus. Experiments are also carried out in a lab-scale to evaluate the process. The results show that at the molar ratio of water to methyl acetate about 4.0-5.0 in the feed stream and the volume ratio of distillate to feed MA above a critical value, the side product contains more than 80% (by mass) (MeOH) and less than 2% (by mass) MA, while the bottom contains more than 46% (by mass) acetic acid (HAc) and less than 0.5% (by mass) methanol with almost complete conversion of MA. Compared with the old catalytic distillation process we proposed before, this process can cut down 47.6% energy consumption and a distillation column.