针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechani...针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechanism,SDIM)。首先,使用对称加密算法对感知数据进行隐私保护,在隐私要求较高并且感知数据量较大时,可以降低计算开销,减少数据加密和奖励计算的时间。其次,基于双层真值发现模型提出了一种支持数据可靠性评估的激励机制,实现连续群智感知的实时奖励,并在参与者有恶意行为时提高奖励公平性。最后给出了SDIM的双重隐私性分析。仿真结果表明,SDIM可以根据数据可靠性有效地计算出真值和奖励,在数据加密和奖励分发的时间上明显优于对比模型,并在参与者有恶意行为时能够更加公平地计算奖励。展开更多
可再生能源出力的波动性、间歇性、用户电力负荷的随机不确定性,使微电网的能量调度极具挑战性.为此,该文提出激励竞争双深度Q网络(motivation dueling double deep Q-network,简称MD3QN)算法,对微电网能量进行协调优化.仿真分析结果表...可再生能源出力的波动性、间歇性、用户电力负荷的随机不确定性,使微电网的能量调度极具挑战性.为此,该文提出激励竞争双深度Q网络(motivation dueling double deep Q-network,简称MD3QN)算法,对微电网能量进行协调优化.仿真分析结果表明:采用MD3QN算法对微电网进行能量调度,能实现削峰填谷,使微电网的经济效益最大化;相对于其他4种算法,MD3QN算法具有更高的综合性能.因此,MD3QN算法具有有效性.展开更多
文摘针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechanism,SDIM)。首先,使用对称加密算法对感知数据进行隐私保护,在隐私要求较高并且感知数据量较大时,可以降低计算开销,减少数据加密和奖励计算的时间。其次,基于双层真值发现模型提出了一种支持数据可靠性评估的激励机制,实现连续群智感知的实时奖励,并在参与者有恶意行为时提高奖励公平性。最后给出了SDIM的双重隐私性分析。仿真结果表明,SDIM可以根据数据可靠性有效地计算出真值和奖励,在数据加密和奖励分发的时间上明显优于对比模型,并在参与者有恶意行为时能够更加公平地计算奖励。
文摘可再生能源出力的波动性、间歇性、用户电力负荷的随机不确定性,使微电网的能量调度极具挑战性.为此,该文提出激励竞争双深度Q网络(motivation dueling double deep Q-network,简称MD3QN)算法,对微电网能量进行协调优化.仿真分析结果表明:采用MD3QN算法对微电网进行能量调度,能实现削峰填谷,使微电网的经济效益最大化;相对于其他4种算法,MD3QN算法具有更高的综合性能.因此,MD3QN算法具有有效性.