期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
实时补缺方法对交通信息融合精度的影响
1
作者
杨扬
姚恩建
《北京工业大学学报》
CAS
CSCD
北大核心
2013年第4期587-593,共7页
针对各种检测方式中因检测设备失效或因错误数据的排除处理等导致的数据缺失情况,本文提出了时间序列法、空间序列法和历史数据法等3种缺失数据实时补缺方法,并以城市快速路的浮动车数据和微波数据的数据融合为例,通过比较上述方法的补...
针对各种检测方式中因检测设备失效或因错误数据的排除处理等导致的数据缺失情况,本文提出了时间序列法、空间序列法和历史数据法等3种缺失数据实时补缺方法,并以城市快速路的浮动车数据和微波数据的数据融合为例,通过比较上述方法的补缺精度以及对数据融合精度的影响,分析了不同补缺方法的适用性以及数据补缺处理中的使用优先级.结果表明,基于时间序列和空间序列补缺方法的数据融合结果的平均相对误差均能控制在20%以内,所提出的实时数据补缺方法具有良好的实用性.
展开更多
关键词
多源
数据
融合
实时
数据
补缺
BP神经网络
下载PDF
职称材料
题名
实时补缺方法对交通信息融合精度的影响
1
作者
杨扬
姚恩建
机构
北京交通大学交通运输学院
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2013年第4期587-593,共7页
基金
国家"973"计划资助项目(2012C13725403)
文摘
针对各种检测方式中因检测设备失效或因错误数据的排除处理等导致的数据缺失情况,本文提出了时间序列法、空间序列法和历史数据法等3种缺失数据实时补缺方法,并以城市快速路的浮动车数据和微波数据的数据融合为例,通过比较上述方法的补缺精度以及对数据融合精度的影响,分析了不同补缺方法的适用性以及数据补缺处理中的使用优先级.结果表明,基于时间序列和空间序列补缺方法的数据融合结果的平均相对误差均能控制在20%以内,所提出的实时数据补缺方法具有良好的实用性.
关键词
多源
数据
融合
实时
数据
补缺
BP神经网络
Keywords
multi-source data fusion
real-time data filling
BP neural network
分类号
U495 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
实时补缺方法对交通信息融合精度的影响
杨扬
姚恩建
《北京工业大学学报》
CAS
CSCD
北大核心
2013
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部