实体-关系联合抽取指从非结构化文本中联合抽取出实体-关系三元组,是信息抽取和知识图谱构建的一项关键任务。文中提出了一种新的基于全局指针网络实体关系联合抽取方法BGPNRE(BERT-based Global Pointer Network for Named Entity-Rela...实体-关系联合抽取指从非结构化文本中联合抽取出实体-关系三元组,是信息抽取和知识图谱构建的一项关键任务。文中提出了一种新的基于全局指针网络实体关系联合抽取方法BGPNRE(BERT-based Global Pointer Network for Named Entity-Relation Joint Extraction),首先通过潜在关系预测模块预测文本中蕴含的关系,过滤掉不可能存在的关系,将实体抽取限制在预测的关系子集中;其次通过使用基于关系的全局指针网络,获取所有主客体实体的位置;最后通过全局指针网络通信模块,将主客体位置高效率地解码对齐成一个实体关系三元组。该方法避免了传统管道式方法存在的错误传播问题,同时也解决了关系冗余、实体重叠、Span提取泛化不足等问题。实验结果表明,所提方法在多关系和重叠实体抽取上表现卓越,并且在NYT和WebNLG公共数据集上达到了最先进的水平。展开更多
针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上...针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取。将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据。利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(ConvolutionalNeuralNetworks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%。最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理。该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础。展开更多
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句...针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。展开更多
地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重...地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重叠关系进行识别,避免传统流水线模型中由于实体识别错误造成级联误差。文章构建了高质量地质领域实体关系语料库,提出了基于预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)和双向门控循环单元BiGRU(Bidirectional Gated Recurrent Units)与条件随机场CRF(Conditional Random Field)的序列标注模型,实现对实体关系的联合抽取。在构建数据集上进行了实验,结果表明,本文提出的联合抽取模型在实体关系抽取上的F1值达到0.671,验证了本文模型在地质实体关系抽取的有效性。展开更多
在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致...在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致实体之间联系性不强、实体和关系之间交互性差的问题。为了进一步提高联合抽取模型的效果,提出一种融合双阶段解码的实体关系联合抽取模型,包括级联策略下的实体解码与集合预测网络阶段的关系解码。该模型分为三个部分:采用Bert进行编码,有效关注到了上下文的信息;采用级联解码的策略先对实体识别,得到不受关系限制的实体信息,充分识别实体;将融合了实体信息的表示嵌入集合预测网络解码出实体-关系三元组,加强实体与关系的联系。在公开数据集纽约时报(The New York Times,NYT)、WebNLG和ACE2005上的实验结果表明,所提出的模型基本优于基线模型,验证了该模型的有效性。展开更多
文摘实体-关系联合抽取指从非结构化文本中联合抽取出实体-关系三元组,是信息抽取和知识图谱构建的一项关键任务。文中提出了一种新的基于全局指针网络实体关系联合抽取方法BGPNRE(BERT-based Global Pointer Network for Named Entity-Relation Joint Extraction),首先通过潜在关系预测模块预测文本中蕴含的关系,过滤掉不可能存在的关系,将实体抽取限制在预测的关系子集中;其次通过使用基于关系的全局指针网络,获取所有主客体实体的位置;最后通过全局指针网络通信模块,将主客体位置高效率地解码对齐成一个实体关系三元组。该方法避免了传统管道式方法存在的错误传播问题,同时也解决了关系冗余、实体重叠、Span提取泛化不足等问题。实验结果表明,所提方法在多关系和重叠实体抽取上表现卓越,并且在NYT和WebNLG公共数据集上达到了最先进的水平。
文摘针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取。将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据。利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(ConvolutionalNeuralNetworks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%。最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理。该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础。
文摘针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。
文摘地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重叠关系进行识别,避免传统流水线模型中由于实体识别错误造成级联误差。文章构建了高质量地质领域实体关系语料库,提出了基于预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)和双向门控循环单元BiGRU(Bidirectional Gated Recurrent Units)与条件随机场CRF(Conditional Random Field)的序列标注模型,实现对实体关系的联合抽取。在构建数据集上进行了实验,结果表明,本文提出的联合抽取模型在实体关系抽取上的F1值达到0.671,验证了本文模型在地质实体关系抽取的有效性。
文摘在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致实体之间联系性不强、实体和关系之间交互性差的问题。为了进一步提高联合抽取模型的效果,提出一种融合双阶段解码的实体关系联合抽取模型,包括级联策略下的实体解码与集合预测网络阶段的关系解码。该模型分为三个部分:采用Bert进行编码,有效关注到了上下文的信息;采用级联解码的策略先对实体识别,得到不受关系限制的实体信息,充分识别实体;将融合了实体信息的表示嵌入集合预测网络解码出实体-关系三元组,加强实体与关系的联系。在公开数据集纽约时报(The New York Times,NYT)、WebNLG和ACE2005上的实验结果表明,所提出的模型基本优于基线模型,验证了该模型的有效性。