近年来,医疗健康领域的实体分类与关系抽取引起了广泛关注。以往工作大多采用流水线模型,此类模型容易忽略任务间联系并造成错误传播,而联合学习则能够很好地避免这2个问题。为此,把卷积神经网络与支持向量机、条件随机场相结合,构建了...近年来,医疗健康领域的实体分类与关系抽取引起了广泛关注。以往工作大多采用流水线模型,此类模型容易忽略任务间联系并造成错误传播,而联合学习则能够很好地避免这2个问题。为此,把卷积神经网络与支持向量机、条件随机场相结合,构建了联合神经网络模型。在此模型基础上,以参数共享的方式,分别通过任务联合、模型联合以及特征联合对实体分类与关系抽取2个任务进行联合学习,在药品说明书语料库中取得了非常不错的效果,实体分类和关系抽取的 F 值分别达到了98.0%和98.3%。实验表明,联合神经网络模型对于实体分类和关系抽取是非常有效的。展开更多
文摘近年来,医疗健康领域的实体分类与关系抽取引起了广泛关注。以往工作大多采用流水线模型,此类模型容易忽略任务间联系并造成错误传播,而联合学习则能够很好地避免这2个问题。为此,把卷积神经网络与支持向量机、条件随机场相结合,构建了联合神经网络模型。在此模型基础上,以参数共享的方式,分别通过任务联合、模型联合以及特征联合对实体分类与关系抽取2个任务进行联合学习,在药品说明书语料库中取得了非常不错的效果,实体分类和关系抽取的 F 值分别达到了98.0%和98.3%。实验表明,联合神经网络模型对于实体分类和关系抽取是非常有效的。