期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于全局上下文注意力特征融合金字塔网络的遥感目标检测
1
作者 孙文赟 车嘉航 金忠 《计算机系统应用》 2024年第9期114-122,共9页
遥感目标检测往往具有图像尺度变化大、目标微小、密集排列和宽高比过大的特性,给高精度定向目标检测造成困难.本文提出了一种全局上下文注意力特征融合金字塔网络.首先,本文设计了一种三重注意力特征融合模块,它能够更好地融合语义和... 遥感目标检测往往具有图像尺度变化大、目标微小、密集排列和宽高比过大的特性,给高精度定向目标检测造成困难.本文提出了一种全局上下文注意力特征融合金字塔网络.首先,本文设计了一种三重注意力特征融合模块,它能够更好地融合语义和尺度不一致的特征.然后引入层内调节方法改进并提出了一个全局上下文信息增强网络,对含有高级语义信息的深层特征的进行细化,提升表征能力.在此基础上,以全局集中调节的思想设计了全局上下文注意力特征融合金字塔网络,利用注意力调制特征自上而下地调节浅层多尺度特征.在几个公开数据集中进行了广泛实验,实验结果的高精度评价指标均优于目前先进的模型. 展开更多
关键词 遥感图像 定向目标检测 注意力特征融合 特征金字塔网络
下载PDF
基于YOLOv3的定向目标检测算法
2
作者 辛月兰 朱杰 谢琪琦 《计算机仿真》 2024年第5期251-257,共7页
为解决YOLOv3目标检测算法中无法对旋转物体进行定向目标检测的问题,提出一种基于YOLOv3的定向目标检测算法。首先,使用多维坐标对训练集的图像进行定向标定,以适应网络训练;其次使用最小外接矩形对网络输出的矩形框进行修正优化,以获... 为解决YOLOv3目标检测算法中无法对旋转物体进行定向目标检测的问题,提出一种基于YOLOv3的定向目标检测算法。首先,使用多维坐标对训练集的图像进行定向标定,以适应网络训练;其次使用最小外接矩形对网络输出的矩形框进行修正优化,以获得更加准确贴合的检测框;然后对网络的损失函数进行改进,使其适应多维坐标的回归;最后,对改进后的网络进行训练。在UCAS-AOD数据集上的实验结果表明,目标检测的能力在改进后有了明显提升,比原始YOLOv3算法精确率提高了6.1%,召回率提高了3.2%。 展开更多
关键词 定向目标检测 多维坐标 最小外接矩形
下载PDF
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
3
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部