It is proved that if μ and v be finite measures on a measurable space (X, S) and v is absolutely continuous with respect to v, then it is holds that L(* S, * μ) L(* S, *v), while L(*S, *μ) and L(*S, V) are the Loeb...It is proved that if μ and v be finite measures on a measurable space (X, S) and v is absolutely continuous with respect to v, then it is holds that L(* S, * μ) L(* S, *v), while L(*S, *μ) and L(*S, V) are the Loeb algebras with respect to measure spaces (X, S,μ) and (X,S,v).展开更多
Urysohn's operators are a very important kind of nonlinear operators. Many scholars investigated their properties in various spaces. Similar to Urysohn's operators, a kind of nonlinear operators is introduced,...Urysohn's operators are a very important kind of nonlinear operators. Many scholars investigated their properties in various spaces. Similar to Urysohn's operators, a kind of nonlinear operators is introduced, and their continuity and complete continuity in a kind of Fenchel-Orlicz spaces are discussed in this paper. The results obtained are a generalization of the corresponding results in [1-4].展开更多
基金Supported by the Special Science Foundation of the Education Committee of Shaanxi Province(03jk066)
文摘It is proved that if μ and v be finite measures on a measurable space (X, S) and v is absolutely continuous with respect to v, then it is holds that L(* S, * μ) L(* S, *v), while L(*S, *μ) and L(*S, V) are the Loeb algebras with respect to measure spaces (X, S,μ) and (X,S,v).
文摘Urysohn's operators are a very important kind of nonlinear operators. Many scholars investigated their properties in various spaces. Similar to Urysohn's operators, a kind of nonlinear operators is introduced, and their continuity and complete continuity in a kind of Fenchel-Orlicz spaces are discussed in this paper. The results obtained are a generalization of the corresponding results in [1-4].