期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于局部扩展社区发现的学术异常引用群体检测 被引量:1
1
作者 林欣蕊 王晓菲 朱焱 《计算机应用》 CSCD 北大核心 2024年第6期1855-1861,共7页
学术社交网络中的某些学者可能组成异常引用群体,相互之间过度引用彼此的文章以谋取利益。现有的异常群体检测算法大多将社区检测与节点表示学习分离,导致最终异常群体检测性能受限。为此,提出一种基于局部扩展社区发现的异常引用群体检... 学术社交网络中的某些学者可能组成异常引用群体,相互之间过度引用彼此的文章以谋取利益。现有的异常群体检测算法大多将社区检测与节点表示学习分离,导致最终异常群体检测性能受限。为此,提出一种基于局部扩展社区发现的异常引用群体检测(GADL)算法。所提算法利用论文研究领域、标题内容等语义信息提取作者异常引用特征;定义基于节点转移相似度、节点社区隶属度、引用异常度和广度优先遍历(BFS)深度的扩展度量函数;结合异常社区发现和异常节点检测,在统一框架下对二者联合优化,可获得最优的异常检测性能。在ACM、DBLP1和DBLP2数据集上,相较于ALP算法,所提算法分别提高了6.07%、5.35%和3.38%。在真实数据集上的实验结果表明,所提算法可有效地检测异常学术引用。 展开更多
关键词 学术社交网络 异常检测 学术异常引用 图神经网络 局部扩展社区发现
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部