期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时间序列的深度学习光伏发电模型研究
被引量:
21
1
作者
刘倩
胡强
+1 位作者
杨凌帆
周杭霞
《电力系统保护与控制》
CSCD
北大核心
2021年第19期87-98,共12页
为了减少光伏系统接入电网产生的不利影响,并对预测光伏功率输出进行研究,提出了一种基于数据中潜在季节类别的混合深度学习模型。整个模型分为三个阶段,即聚类、训练和预测。在聚类阶段,采用相关分析和自组织映射来选择历史数据中相关...
为了减少光伏系统接入电网产生的不利影响,并对预测光伏功率输出进行研究,提出了一种基于数据中潜在季节类别的混合深度学习模型。整个模型分为三个阶段,即聚类、训练和预测。在聚类阶段,采用相关分析和自组织映射来选择历史数据中相关性最高的因素。在训练阶段,将卷积神经网络、长短期记忆神经网络和注意力机制相结合,以构建用于预测的混合深度学习模型。在预测阶段,按测试集的月份选择分类的预测模型。实验结果表明,该实验方法在7.5 min内的间隔预测中具有较高的准确性。
展开更多
关键词
光伏发电
光伏功率预测
季节
类别
自组织映射
深度学习
注意力机制
下载PDF
职称材料
题名
基于时间序列的深度学习光伏发电模型研究
被引量:
21
1
作者
刘倩
胡强
杨凌帆
周杭霞
机构
中国计量大学
出处
《电力系统保护与控制》
CSCD
北大核心
2021年第19期87-98,共12页
基金
浙江省基础公益研究计划项目资助(LGF18F020017)。
文摘
为了减少光伏系统接入电网产生的不利影响,并对预测光伏功率输出进行研究,提出了一种基于数据中潜在季节类别的混合深度学习模型。整个模型分为三个阶段,即聚类、训练和预测。在聚类阶段,采用相关分析和自组织映射来选择历史数据中相关性最高的因素。在训练阶段,将卷积神经网络、长短期记忆神经网络和注意力机制相结合,以构建用于预测的混合深度学习模型。在预测阶段,按测试集的月份选择分类的预测模型。实验结果表明,该实验方法在7.5 min内的间隔预测中具有较高的准确性。
关键词
光伏发电
光伏功率预测
季节
类别
自组织映射
深度学习
注意力机制
Keywords
PV power generation
PV power prediction
season category
self-organizing mapping
deep learning
attention mechanism
分类号
TM615 [电气工程—电力系统及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时间序列的深度学习光伏发电模型研究
刘倩
胡强
杨凌帆
周杭霞
《电力系统保护与控制》
CSCD
北大核心
2021
21
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部