期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
哈密尔顿图的一类新的局部化充分条件 被引量:1
1
作者 毛林繁 刘彦佩 《曲阜师范大学学报(自然科学版)》 CAS 2001年第2期18-22,共5页
设L为图G的一个导出子图 ,若有 x ,y∈V(L) ,只要dL(x ,y) =2就有max{dG(x) ,dG(y) }≥ |G| / 2 ,则称L有局部Fan性质 .该文证明了以下结果 .G是一个 2_连通的 {K1.3 ,B1} -free图 .对任意一个整数s≥ 0 ,若G的任一个导出子图L∈ {Bi,0... 设L为图G的一个导出子图 ,若有 x ,y∈V(L) ,只要dL(x ,y) =2就有max{dG(x) ,dG(y) }≥ |G| / 2 ,则称L有局部Fan性质 .该文证明了以下结果 .G是一个 2_连通的 {K1.3 ,B1} -free图 .对任意一个整数s≥ 0 ,若G的任一个导出子图L∈ {Bi,0≤i≤s;Zs+2 }均有局部Fan性质 ,则G是Hamiltonian图 ,除非s=2且G H9.由此得到每个 2_连通的 {K1.3 ,Bi,0≤i≤s;Zs+2 }_free图除s =2且该图同构于H9外 ,均为Hamiltonian图 . 展开更多
关键词 HAMILTONIAN图 局部化Fan条件 子图序列 极大圈 禁用子图 简单图
下载PDF
图的子图序列和图的子林分解 被引量:1
2
作者 蒋志洪 《应用数学》 CSCD 北大核心 1994年第2期254-256,共3页
在文献[1]里,Michael.O.Albertson和David Berman对任意图G定义了一个函数f(G): 他们猜想当G是平面图时,f(G)的下界至少是1/2。如果这个猜想成立,则可以利用这结果,而不用四色定理来解决Erds-Vising问题.(在文献[2],251页,问题36).同时... 在文献[1]里,Michael.O.Albertson和David Berman对任意图G定义了一个函数f(G): 他们猜想当G是平面图时,f(G)的下界至少是1/2。如果这个猜想成立,则可以利用这结果,而不用四色定理来解决Erds-Vising问题.(在文献[2],251页,问题36).同时他们提出了对于其它类型图G,f(G)的下界问题.本文首先引进了子图序列概念,并用它作为工具来估计f(G)的下界.主要给出了在亏格大于零的定向曲面上图G的f(G)下确界。 展开更多
关键词 子图序列 子林分解 平面图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部