The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement...The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.展开更多
The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator c...The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the πN elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.展开更多
文摘The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.
基金The project supported by National Natural Science Foundation of China under Grant No.10675054
文摘The quark potential model is used to investigate the low-energy elastic scattering of πN system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the πN elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.