The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one...The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one of the primary causes of parabolic trough solar receiver(PTR)failures.In this paper,a secondary reflector used as a homogenizing reflector(HR)in a conventional parabolic trough solar collector(PTSC)was recommended to homogenize the solar flux distribution and thus increase the reliability of the PTR.The design method of this new type PTSC with a HR was also proposed.Meanwhile,the concentrated solar flux distribution was calculated by adopting the Monte Carlo ray-trace(MCRT)method.Then,the coupled heat transfer process within the PTR was simulated by treating the solar flux calculated by the MCRT method as the heat flux boundary condition for the finite volume method model.The solar flux distribution on the outer surface of the absorber tube,the temperature field of the absorber tube wall,and the collector efficiency were analyzed in detail.It was revealed that the absorber tube could almost be heated uniformly in the PTSC with a HR.As a result,the circumferential temperature difference and the maximum temperature could be reduced significantly,while the efficiency tended to decrease slightly due to the inevitably increased optical loss.Under the conditions studied in this paper,although the collector efficiency decreased by about 4%,the circumferential temperature difference was reduced from about 25 to 3 K and the maximum temperature was reduced from667 to 661 K.展开更多
A newly designed solar collector named dual-function solar collector is proposed.The dual-function solar collector integrated with building can perform in two different modes:working as a passive space heating collect...A newly designed solar collector named dual-function solar collector is proposed.The dual-function solar collector integrated with building can perform in two different modes:working as a passive space heating collector in cold sunny days such as in winter,or working as a facade water heating collector in hot days such as in summer.An experimental study has been carried out to investigate the performance of the novel system in space heating mode,whilst,the dynamic numerical model has been established and validated.The experimental and numerical results show that during the period of the measurement from 9:00 to 17:00,the mean indoor temperature was up to 24.7°C while the mean ambient temperature was only 4.8°C,and a temperature stratification was present in the room.Moreover,a numerical study on the effect of optical property of coatings has been carried out.展开更多
In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and hea...In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.展开更多
In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshi...In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshine condition, the fresh air is directly delivered into the indoor environment after being heated by the solar collector. When the sun radiation is reduced, the heated air temperature can not satisfy the need of supply of air temperature.The main heat source is changed to phase change heat storage equipment instead of solar energy. The system adopt heat pipe for a high-efficiency and isothermal heat transfer which recover the shortcomings of PCMs such as: low coefficient of thermal conductivity and poor thermal efficiency. This article establishes the physical model of phase change solar energy fresh air thermal storage system and creates the mathematical model of its unsteady heat transfer to simulate and analyse the operation process by using Fluent software. The results of the study show that, compared to normal fresh air system, the phase change solar energy fresh air thermal storage system has a significant improvement in energy saving and indoor comfort level and will play an important role in the energy sustainable development.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51176155 and 51306149)the Research Project of Chinese Ministry of Education(Grant No.113055A)
文摘The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one of the primary causes of parabolic trough solar receiver(PTR)failures.In this paper,a secondary reflector used as a homogenizing reflector(HR)in a conventional parabolic trough solar collector(PTSC)was recommended to homogenize the solar flux distribution and thus increase the reliability of the PTR.The design method of this new type PTSC with a HR was also proposed.Meanwhile,the concentrated solar flux distribution was calculated by adopting the Monte Carlo ray-trace(MCRT)method.Then,the coupled heat transfer process within the PTR was simulated by treating the solar flux calculated by the MCRT method as the heat flux boundary condition for the finite volume method model.The solar flux distribution on the outer surface of the absorber tube,the temperature field of the absorber tube wall,and the collector efficiency were analyzed in detail.It was revealed that the absorber tube could almost be heated uniformly in the PTSC with a HR.As a result,the circumferential temperature difference and the maximum temperature could be reduced significantly,while the efficiency tended to decrease slightly due to the inevitably increased optical loss.Under the conditions studied in this paper,although the collector efficiency decreased by about 4%,the circumferential temperature difference was reduced from about 25 to 3 K and the maximum temperature was reduced from667 to 661 K.
基金supported by the National Natural Science Foundation of China (Grant No. 50876098)the National High Technology Research and Development Program of China (Grant No. 2006AA05Z412)the National Key Technology R&D Program of China (Grant No. 2006BAA04B04)
文摘A newly designed solar collector named dual-function solar collector is proposed.The dual-function solar collector integrated with building can perform in two different modes:working as a passive space heating collector in cold sunny days such as in winter,or working as a facade water heating collector in hot days such as in summer.An experimental study has been carried out to investigate the performance of the novel system in space heating mode,whilst,the dynamic numerical model has been established and validated.The experimental and numerical results show that during the period of the measurement from 9:00 to 17:00,the mean indoor temperature was up to 24.7°C while the mean ambient temperature was only 4.8°C,and a temperature stratification was present in the room.Moreover,a numerical study on the effect of optical property of coatings has been carried out.
基金Projects(2011BAJ03B12-3,2013BAJ10B02-03) supported by the National Science and Technology Program during the 12th Five-year Plan Period,ChinaProject(51378005) supported by the National Natural Science Foundation,China+1 种基金Projects(DUT14RC(3)123,DUT14RC(3)129) supported by Fundamental Research Funds for the Dalian University of Tecnology,ChinaProject(DUT14ZD210) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.
文摘In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshine condition, the fresh air is directly delivered into the indoor environment after being heated by the solar collector. When the sun radiation is reduced, the heated air temperature can not satisfy the need of supply of air temperature.The main heat source is changed to phase change heat storage equipment instead of solar energy. The system adopt heat pipe for a high-efficiency and isothermal heat transfer which recover the shortcomings of PCMs such as: low coefficient of thermal conductivity and poor thermal efficiency. This article establishes the physical model of phase change solar energy fresh air thermal storage system and creates the mathematical model of its unsteady heat transfer to simulate and analyse the operation process by using Fluent software. The results of the study show that, compared to normal fresh air system, the phase change solar energy fresh air thermal storage system has a significant improvement in energy saving and indoor comfort level and will play an important role in the energy sustainable development.