期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于wavelet-SVM的PM_(10)浓度时序数据预测 被引量:24
1
作者 王平 张红 +2 位作者 秦作栋 姚清晨 耿红 《环境科学》 EI CAS CSCD 北大核心 2017年第8期3153-3161,共9页
太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量... 太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量机(support vector machine,SVM)应用于PM_(10)污染物浓度时序数据预测时,表现出良好的泛化能力.在预测模型建立过程中通常选择历史数据作为学习模型的输入特征,然而这样的数据表示形式,结构单一,信息表达不完备,在很大程度上将影响预测模型的泛化能力.本文以山西省太原市城区4个监测站点的PM_(10)日浓度数据为研究数据,通过小波变换(wavelet transform)将一维输入数据转化为由低频信息和高频信息构成的高维数据,并以该数据为输入数据建立wavelet-SVM预测模型.结果表明,相较于传统SVM模型预测,wavelet-SVM模型预测结果具有更高的精度,尤其能更加准确捕捉到PM_(10)浓度突变点,为大气污染预警提供有效信息支持,并且wavelet-SVM模型对于PM_(10)浓度时序数据变化趋势的预测精度有明显提升,能更好地预测PM_(10)浓度变化趋势,揭示PM_(10)浓度时序数据内在规律. 展开更多
关键词 支持向量机 小波变换 大气污染浓度预测 输入向量 预测模型
原文传递
基于混合深度神经网络的大气污染预测 被引量:1
2
作者 宋耀宇 《信息与电脑》 2019年第24期99-101,共3页
城市空气污染物分布受各种因素的影响,准确预测空气污染物分布情况可以提高环境管理的决策能力,防止严重空气污染事件的发生。基于大量的气象数据和深度学习技术,笔者提出了一种新的大气污染物浓度预测方法。该方法使用卷积神经网络作... 城市空气污染物分布受各种因素的影响,准确预测空气污染物分布情况可以提高环境管理的决策能力,防止严重空气污染事件的发生。基于大量的气象数据和深度学习技术,笔者提出了一种新的大气污染物浓度预测方法。该方法使用卷积神经网络作为基础层的设计,可自动提取输入数据的特征。输出层运用一个长短时记忆网络,以保证时间依赖性。通过性能优化,该模型可以按时间序列预测未来的细颗粒物(PM2.5)质量浓度。使用郑州市的历史气象数据,将模型预测结果与实际结果进行比较;实验结果表明,与经典深度学习模型相比,该算法提高了预测性能。 展开更多
关键词 混合深度神经网络 大气污染浓度预测 细颗粒(PM2.5)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部