期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于wavelet-SVM的PM_(10)浓度时序数据预测
被引量:
24
1
作者
王平
张红
+2 位作者
秦作栋
姚清晨
耿红
《环境科学》
EI
CAS
CSCD
北大核心
2017年第8期3153-3161,共9页
太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量...
太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量机(support vector machine,SVM)应用于PM_(10)污染物浓度时序数据预测时,表现出良好的泛化能力.在预测模型建立过程中通常选择历史数据作为学习模型的输入特征,然而这样的数据表示形式,结构单一,信息表达不完备,在很大程度上将影响预测模型的泛化能力.本文以山西省太原市城区4个监测站点的PM_(10)日浓度数据为研究数据,通过小波变换(wavelet transform)将一维输入数据转化为由低频信息和高频信息构成的高维数据,并以该数据为输入数据建立wavelet-SVM预测模型.结果表明,相较于传统SVM模型预测,wavelet-SVM模型预测结果具有更高的精度,尤其能更加准确捕捉到PM_(10)浓度突变点,为大气污染预警提供有效信息支持,并且wavelet-SVM模型对于PM_(10)浓度时序数据变化趋势的预测精度有明显提升,能更好地预测PM_(10)浓度变化趋势,揭示PM_(10)浓度时序数据内在规律.
展开更多
关键词
支持向量机
小波变换
大气污染
物
浓度
预测
输入向量
预测
模型
原文传递
基于混合深度神经网络的大气污染预测
被引量:
1
2
作者
宋耀宇
《信息与电脑》
2019年第24期99-101,共3页
城市空气污染物分布受各种因素的影响,准确预测空气污染物分布情况可以提高环境管理的决策能力,防止严重空气污染事件的发生。基于大量的气象数据和深度学习技术,笔者提出了一种新的大气污染物浓度预测方法。该方法使用卷积神经网络作...
城市空气污染物分布受各种因素的影响,准确预测空气污染物分布情况可以提高环境管理的决策能力,防止严重空气污染事件的发生。基于大量的气象数据和深度学习技术,笔者提出了一种新的大气污染物浓度预测方法。该方法使用卷积神经网络作为基础层的设计,可自动提取输入数据的特征。输出层运用一个长短时记忆网络,以保证时间依赖性。通过性能优化,该模型可以按时间序列预测未来的细颗粒物(PM2.5)质量浓度。使用郑州市的历史气象数据,将模型预测结果与实际结果进行比较;实验结果表明,与经典深度学习模型相比,该算法提高了预测性能。
展开更多
关键词
混合深度神经网络
大气污染
物
浓度
预测
细颗粒
物
(PM2.5)
下载PDF
职称材料
题名
基于wavelet-SVM的PM_(10)浓度时序数据预测
被引量:
24
1
作者
王平
张红
秦作栋
姚清晨
耿红
机构
山西大学黄土高原研究所
山西大学环境与资源学院
太原市环境监测中心站
出处
《环境科学》
EI
CAS
CSCD
北大核心
2017年第8期3153-3161,共9页
基金
山西省自然科学基金项目(201601D102055)
文摘
太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量机(support vector machine,SVM)应用于PM_(10)污染物浓度时序数据预测时,表现出良好的泛化能力.在预测模型建立过程中通常选择历史数据作为学习模型的输入特征,然而这样的数据表示形式,结构单一,信息表达不完备,在很大程度上将影响预测模型的泛化能力.本文以山西省太原市城区4个监测站点的PM_(10)日浓度数据为研究数据,通过小波变换(wavelet transform)将一维输入数据转化为由低频信息和高频信息构成的高维数据,并以该数据为输入数据建立wavelet-SVM预测模型.结果表明,相较于传统SVM模型预测,wavelet-SVM模型预测结果具有更高的精度,尤其能更加准确捕捉到PM_(10)浓度突变点,为大气污染预警提供有效信息支持,并且wavelet-SVM模型对于PM_(10)浓度时序数据变化趋势的预测精度有明显提升,能更好地预测PM_(10)浓度变化趋势,揭示PM_(10)浓度时序数据内在规律.
关键词
支持向量机
小波变换
大气污染
物
浓度
预测
输入向量
预测
模型
Keywords
SVM
wavelet transform
air pollutant concentration forecasting
input variables
forecasting model
分类号
X513 [环境科学与工程—环境工程]
原文传递
题名
基于混合深度神经网络的大气污染预测
被引量:
1
2
作者
宋耀宇
机构
华北水利水电大学
出处
《信息与电脑》
2019年第24期99-101,共3页
文摘
城市空气污染物分布受各种因素的影响,准确预测空气污染物分布情况可以提高环境管理的决策能力,防止严重空气污染事件的发生。基于大量的气象数据和深度学习技术,笔者提出了一种新的大气污染物浓度预测方法。该方法使用卷积神经网络作为基础层的设计,可自动提取输入数据的特征。输出层运用一个长短时记忆网络,以保证时间依赖性。通过性能优化,该模型可以按时间序列预测未来的细颗粒物(PM2.5)质量浓度。使用郑州市的历史气象数据,将模型预测结果与实际结果进行比较;实验结果表明,与经典深度学习模型相比,该算法提高了预测性能。
关键词
混合深度神经网络
大气污染
物
浓度
预测
细颗粒
物
(PM2.5)
Keywords
mixed deep neural networks
atmospheric pollutant concentration prediction
particulate matter(PM2.5)
分类号
X51 [环境科学与工程—环境工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于wavelet-SVM的PM_(10)浓度时序数据预测
王平
张红
秦作栋
姚清晨
耿红
《环境科学》
EI
CAS
CSCD
北大核心
2017
24
原文传递
2
基于混合深度神经网络的大气污染预测
宋耀宇
《信息与电脑》
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部