期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RoBERTa-WWM的大学生论坛情感分析模型
被引量:
16
1
作者
王曙燕
原柯
《计算机工程》
CAS
CSCD
北大核心
2022年第8期292-298,305,共8页
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本...
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本语句转化为语义特征表示,并将其输入到文本卷积神经网络中,以提取语句的局部语义特征,同时利用双向门控循环单元网络对局部语义特征进行双向处理,获得全面的上下文语义信息。在此基础上,通过Softmax分类器计算语句在情感标签中的概率向量,选择最大值表示的情感标签作为最终输出的情感标签。实验结果表明,相比RoBERTa-WWM、EK-INIT-CNN、BERT等模型,该模型在大学生论坛与NLPCC2014数据集上具有较优的分类性能,并且在大学生论坛数据集上宏平均精准率、宏平均召回率、宏平均F1值和微平均F1值分别为89.43%、90.43%、90.12%和92.48%。
展开更多
关键词
深度学习
大学生
情感
分析
RoBERTa-WWM模型
文本卷积神经网络
双向门控循环单元网络
下载PDF
职称材料
题名
基于RoBERTa-WWM的大学生论坛情感分析模型
被引量:
16
1
作者
王曙燕
原柯
机构
西安邮电大学计算机学院
出处
《计算机工程》
CAS
CSCD
北大核心
2022年第8期292-298,305,共8页
基金
陕西省重点研发计划(2020GY-010)
西安市科技计划项目(2019218114GXRC017CG018-GXYD17.10)。
文摘
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本语句转化为语义特征表示,并将其输入到文本卷积神经网络中,以提取语句的局部语义特征,同时利用双向门控循环单元网络对局部语义特征进行双向处理,获得全面的上下文语义信息。在此基础上,通过Softmax分类器计算语句在情感标签中的概率向量,选择最大值表示的情感标签作为最终输出的情感标签。实验结果表明,相比RoBERTa-WWM、EK-INIT-CNN、BERT等模型,该模型在大学生论坛与NLPCC2014数据集上具有较优的分类性能,并且在大学生论坛数据集上宏平均精准率、宏平均召回率、宏平均F1值和微平均F1值分别为89.43%、90.43%、90.12%和92.48%。
关键词
深度学习
大学生
情感
分析
RoBERTa-WWM模型
文本卷积神经网络
双向门控循环单元网络
Keywords
Deep Learning(DL)
sentiment analysis of college student
RoBERTa-WWM model
Text Convolutional Neural Network(TextCNN)
Bidirectional Gated Recurrent Unit(BiGRU)network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RoBERTa-WWM的大学生论坛情感分析模型
王曙燕
原柯
《计算机工程》
CAS
CSCD
北大核心
2022
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部