期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于RoBERTa-WWM的大学生论坛情感分析模型 被引量:16
1
作者 王曙燕 原柯 《计算机工程》 CAS CSCD 北大核心 2022年第8期292-298,305,共8页
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本... 大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本语句转化为语义特征表示,并将其输入到文本卷积神经网络中,以提取语句的局部语义特征,同时利用双向门控循环单元网络对局部语义特征进行双向处理,获得全面的上下文语义信息。在此基础上,通过Softmax分类器计算语句在情感标签中的概率向量,选择最大值表示的情感标签作为最终输出的情感标签。实验结果表明,相比RoBERTa-WWM、EK-INIT-CNN、BERT等模型,该模型在大学生论坛与NLPCC2014数据集上具有较优的分类性能,并且在大学生论坛数据集上宏平均精准率、宏平均召回率、宏平均F1值和微平均F1值分别为89.43%、90.43%、90.12%和92.48%。 展开更多
关键词 深度学习 大学生情感分析 RoBERTa-WWM模型 文本卷积神经网络 双向门控循环单元网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部