期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于透视变换和SNc-YOLOv5的大块煤识别方法应用
1
作者
于涛
《西安科技大学学报》
CAS
北大核心
2024年第1期54-63,共10页
为了提高带式输送机大块煤识别的准确率,避免大块煤堆积对皮带造成的磨损,延长输送机的使用寿命,提出了基于透视变换和SNc-YOLOv5的大块煤识别方法,该方法首先利用透视变换技术对原始图像进行处理,有效地将图像中的非输送机区域滤除,并...
为了提高带式输送机大块煤识别的准确率,避免大块煤堆积对皮带造成的磨损,延长输送机的使用寿命,提出了基于透视变换和SNc-YOLOv5的大块煤识别方法,该方法首先利用透视变换技术对原始图像进行处理,有效地将图像中的非输送机区域滤除,并对输送机区域进行坐标矫正;然后,采用SNc-YOLOv5模型对经过标准化处理的图像进行深度学习建模,得到大块煤识别模型;最后,通过试验分析和现场应用对该方法进行有效性验证。结果表明:该方法在1号煤矿数据集的试验分析精确率为94.8%,召回率为83.2%,在2号煤矿数据集的试验分析精确率为92.8%,召回率为85.3%,现场应用置信度达到0.9,与其他方法进行比较,精确率和召回率指标均优于其他方法;该方法在图像预处理阶段提取带式输送机区域对图像进行标准化,仅对感兴趣区域进行处理,提高了大块煤识别的准确率。该算法部署到某煤矿现场,能够实现实时监测,为带式输送机的安全运行和延长使用寿命提供了有力保障。
展开更多
关键词
大
块煤
识别
带式输送机
透视变换
图像标准化
下载PDF
职称材料
题名
基于透视变换和SNc-YOLOv5的大块煤识别方法应用
1
作者
于涛
机构
国家能源集团新疆能源有限责任公司
出处
《西安科技大学学报》
CAS
北大核心
2024年第1期54-63,共10页
基金
国家自然科学基金项目(51874231)。
文摘
为了提高带式输送机大块煤识别的准确率,避免大块煤堆积对皮带造成的磨损,延长输送机的使用寿命,提出了基于透视变换和SNc-YOLOv5的大块煤识别方法,该方法首先利用透视变换技术对原始图像进行处理,有效地将图像中的非输送机区域滤除,并对输送机区域进行坐标矫正;然后,采用SNc-YOLOv5模型对经过标准化处理的图像进行深度学习建模,得到大块煤识别模型;最后,通过试验分析和现场应用对该方法进行有效性验证。结果表明:该方法在1号煤矿数据集的试验分析精确率为94.8%,召回率为83.2%,在2号煤矿数据集的试验分析精确率为92.8%,召回率为85.3%,现场应用置信度达到0.9,与其他方法进行比较,精确率和召回率指标均优于其他方法;该方法在图像预处理阶段提取带式输送机区域对图像进行标准化,仅对感兴趣区域进行处理,提高了大块煤识别的准确率。该算法部署到某煤矿现场,能够实现实时监测,为带式输送机的安全运行和延长使用寿命提供了有力保障。
关键词
大
块煤
识别
带式输送机
透视变换
图像标准化
Keywords
large block coal identification
belt conveyor
perspective transformation
normalisation
分类号
TD712 [矿业工程—矿井通风与安全]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于透视变换和SNc-YOLOv5的大块煤识别方法应用
于涛
《西安科技大学学报》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部