期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Morita系统环上的自由模
1
作者 张小向 陈建龙 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第5期140-145,共6页
利用Morita系统环上的 (右 )模的分解 ,研究其上的自由模 ,并利用所得的结果刻画形式三角矩阵环上的自由模与投射模 .对于Morita系统环T=RMNS(θ,ψ),每个T模可以分解为一个四元素对 (P ,Q) (f,g) .记 PR =P/Imf, QS =Q/Img , R =R/Im... 利用Morita系统环上的 (右 )模的分解 ,研究其上的自由模 ,并利用所得的结果刻画形式三角矩阵环上的自由模与投射模 .对于Morita系统环T=RMNS(θ,ψ),每个T模可以分解为一个四元素对 (P ,Q) (f,g) .记 PR =P/Imf, QS =Q/Img , R =R/Imθ, S =S/Imψ ,且设Λ为任意非空集合 ,主要结果有 :1 )若 (P ,Q) (f,g) T(Λ) ,则 P R R(Λ) , Q S S(Λ) .2 )若 1 P Rθ=0且 1 Q Sψ=0 ,则 {(pλ,qλ)λ∈Λ}是 (P ,Q) (f,g) 的一组自由基当且仅当下列条件①和②成立 :① { pλ λ∈Λ}和 { qλ λ∈Λ}分别为 P R 和 Q S 的自由基 ,且 {pλ λ∈Λ}是R线性无关的 ,qλ λ∈Λ是S线性无关的 ;②f ∑λqλ nλ =0蕴涵nλ =0 ,且g ∑λpλ mλ =0蕴涵mλ =0 (对于任意的nλ ∈N ,mλ ∈M ,λ∈Λ) .3)当M =0时 ,(P ,Q) (f,g) T(Λ) 当且仅当 P R R(Λ) , Q S S(Λ) 展开更多
关键词 MORITA系统 自由模 投射模 交换 形式三角矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部