期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多领导者Stackelberg博弈的分层联邦学习激励机制设计
被引量:
1
1
作者
耿方兴
李卓
陈昕
《计算机应用》
CSCD
北大核心
2023年第11期3551-3558,共8页
分层联邦学习中隐私安全与资源消耗等问题的存在降低了参与者的积极性。为鼓励足够多的参与者积极参与学习任务,并针对多移动设备与多边缘服务器之间的决策问题,提出基于多领导者Stackelberg博弈的激励机制。首先,通过量化移动设备的成...
分层联邦学习中隐私安全与资源消耗等问题的存在降低了参与者的积极性。为鼓励足够多的参与者积极参与学习任务,并针对多移动设备与多边缘服务器之间的决策问题,提出基于多领导者Stackelberg博弈的激励机制。首先,通过量化移动设备的成本效用与边缘服务器的支付报酬,构建效用函数并定义最优化问题;其次,将移动设备之间的交互建模为演化博弈,将边缘服务器之间的交互建模为非合作博弈。为求解最优边缘服务器选择和定价策略,提出多轮迭代边缘服务器选择算法(MIES)和梯度迭代定价算法(GIPA),前者用于求解移动设备之间的演化博弈均衡解,后者用于求解边缘服务器之间的定价竞争问题。实验结果表明,所提算法GIPA与最优定价预测策略(OPPS)、历史最优定价策略(HOPS)和随机定价策略(RPS)相比,可使边缘服务器的平均效用分别提高4.06%、10.08%和31.39%。
展开更多
关键词
分层联邦学习
激励机制
定价策略
多
领导者
stackelberg
博弈
演化
博弈
下载PDF
职称材料
题名
基于多领导者Stackelberg博弈的分层联邦学习激励机制设计
被引量:
1
1
作者
耿方兴
李卓
陈昕
机构
网络文化与数字传播北京市重点实验室(北京信息科技大学)
北京信息科技大学计算机学院
出处
《计算机应用》
CSCD
北大核心
2023年第11期3551-3558,共8页
基金
北京市自然科学基金资助项目(4232024)
国家重点研发计划项目(2022YFF0604502)
+1 种基金
国家自然科学基金资助项目(61872044)
北京市青年拔尖人才项目。
文摘
分层联邦学习中隐私安全与资源消耗等问题的存在降低了参与者的积极性。为鼓励足够多的参与者积极参与学习任务,并针对多移动设备与多边缘服务器之间的决策问题,提出基于多领导者Stackelberg博弈的激励机制。首先,通过量化移动设备的成本效用与边缘服务器的支付报酬,构建效用函数并定义最优化问题;其次,将移动设备之间的交互建模为演化博弈,将边缘服务器之间的交互建模为非合作博弈。为求解最优边缘服务器选择和定价策略,提出多轮迭代边缘服务器选择算法(MIES)和梯度迭代定价算法(GIPA),前者用于求解移动设备之间的演化博弈均衡解,后者用于求解边缘服务器之间的定价竞争问题。实验结果表明,所提算法GIPA与最优定价预测策略(OPPS)、历史最优定价策略(HOPS)和随机定价策略(RPS)相比,可使边缘服务器的平均效用分别提高4.06%、10.08%和31.39%。
关键词
分层联邦学习
激励机制
定价策略
多
领导者
stackelberg
博弈
演化
博弈
Keywords
hierarchical federated learning
incentive mechanism
pricing strategy
multi-leader
stackelberg
game
evolutionary game
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多领导者Stackelberg博弈的分层联邦学习激励机制设计
耿方兴
李卓
陈昕
《计算机应用》
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部