The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given functio...The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given function to be monotone. We discuss this equation for continuous solutions in the case that the given function is a PM(piecewise monotone) function, a special class of non-monotonic functions. Using extension method, we give a general construction of solutions for the polynomial-like iterative equation.展开更多
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then trans...Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11501471)Fundamental Research Funds for the Central Universities (Grant No. 2682015BR017)
文摘The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given function to be monotone. We discuss this equation for continuous solutions in the case that the given function is a PM(piecewise monotone) function, a special class of non-monotonic functions. Using extension method, we give a general construction of solutions for the polynomial-like iterative equation.
文摘Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.