Let A = F [x, y] be the polynomial algebra on two variables x, y over an algebraically closed field F of characteristic zero. Under the Poisson bracket, A is equipped with a natural Lie algebra structure. It is proven...Let A = F [x, y] be the polynomial algebra on two variables x, y over an algebraically closed field F of characteristic zero. Under the Poisson bracket, A is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of A* induced from the multiplication of the associative commutative algebra A coincides with the maximal good subspace of A* induced from the Poisson bracket of the Poisson Lie algebra A. Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products,five classes of new infinite-dimensional Lie algebras are obtained.展开更多
The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of th...The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n + 2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector a^→∈ C^n, we prove that the space forms an irreducible o(n + 2, C)-module for any c ∈ C if a^→ is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra in n variables. Moreover, we prove that l forms an infinite-dimensional irreducible weight o(n +2, C)-module with finite-dimensional weight subspaces if c Z/2.展开更多
Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation.
基金supported by National Natural Science Foundation of China(Grant Nos.11071147,11431010 and 11371278)Natural Science Foundation of Shandong Province(Grant Nos.ZR2010AM003and ZR2013AL013)+1 种基金Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)Fundamental Research Funds for the Central Universities
文摘Let A = F [x, y] be the polynomial algebra on two variables x, y over an algebraically closed field F of characteristic zero. Under the Poisson bracket, A is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of A* induced from the multiplication of the associative commutative algebra A coincides with the maximal good subspace of A* induced from the Poisson bracket of the Poisson Lie algebra A. Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products,five classes of new infinite-dimensional Lie algebras are obtained.
基金the National Natural Science Foundation of China (10371036)the Natural Science Foundation of Beijing (1042001)the Fundamental Research Foundation of Beijing University of Technology (KZ0601200382)
文摘This paper deals with Δ-good filtration dimensions of a standardly stratified algebra and Δ[x]-good titration dimensions of its polynomial algebra.
基金supported by National Natural Science Foundation of China(Grant Nos.11171324 and 11321101)
文摘The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n + 2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector a^→∈ C^n, we prove that the space forms an irreducible o(n + 2, C)-module for any c ∈ C if a^→ is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra in n variables. Moreover, we prove that l forms an infinite-dimensional irreducible weight o(n +2, C)-module with finite-dimensional weight subspaces if c Z/2.
基金supported by National Natural Science Foundation of China (Grant No.10771182)Doctorate Foundation Ministry of Education of China (Grant No. 200811170001)
文摘Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation.