期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数据填补-机器学习的煤与瓦斯突出预测效果研究
被引量:
5
1
作者
陈利成
陈建宏
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第9期69-74,共6页
为解决煤与瓦斯突出事故数据集少,数据缺失严重的问题,提出将多重插补(MI)和随机森林填补(MF)应用于填补缺失参数,并将填补前和填补后的数据输入SVM,ELM,RF 3种机器学习算法进行训练,构建9种耦合模型。采用总体准确率、局部准确率、运...
为解决煤与瓦斯突出事故数据集少,数据缺失严重的问题,提出将多重插补(MI)和随机森林填补(MF)应用于填补缺失参数,并将填补前和填补后的数据输入SVM,ELM,RF 3种机器学习算法进行训练,构建9种耦合模型。采用总体准确率、局部准确率、运行时间这3种指标评价模型性能。研究结果表明:采用数据填补算法后,由于训练样本增大,煤与瓦斯突出事故预测的总体准确率提高,运行时间增长;MF-RF模型的总体准确率与事故预测准确率最高,分别为97.90%和98.93%;RD-ELM模型的运行时间最短,为0.24 s;多重插补使得煤与瓦斯突出预测的总体准确率提高0.98%~1.11%,随机森林填补总体准确率提高5.13%~7.50%,随机森林填补的效果好于多重插补。
展开更多
关键词
煤与瓦斯突出
预测
多重
插
补
(
mi
)
随机森林填
补
(MF)
机器学习
下载PDF
职称材料
题名
基于数据填补-机器学习的煤与瓦斯突出预测效果研究
被引量:
5
1
作者
陈利成
陈建宏
机构
中南大学资源与安全工程学院
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第9期69-74,共6页
基金
国家自然科学基金项目(51374242)。
文摘
为解决煤与瓦斯突出事故数据集少,数据缺失严重的问题,提出将多重插补(MI)和随机森林填补(MF)应用于填补缺失参数,并将填补前和填补后的数据输入SVM,ELM,RF 3种机器学习算法进行训练,构建9种耦合模型。采用总体准确率、局部准确率、运行时间这3种指标评价模型性能。研究结果表明:采用数据填补算法后,由于训练样本增大,煤与瓦斯突出事故预测的总体准确率提高,运行时间增长;MF-RF模型的总体准确率与事故预测准确率最高,分别为97.90%和98.93%;RD-ELM模型的运行时间最短,为0.24 s;多重插补使得煤与瓦斯突出预测的总体准确率提高0.98%~1.11%,随机森林填补总体准确率提高5.13%~7.50%,随机森林填补的效果好于多重插补。
关键词
煤与瓦斯突出
预测
多重
插
补
(
mi
)
随机森林填
补
(MF)
机器学习
Keywords
coal and gas outburst
prediction
multiple imputation(
mi
)
mi
ssForest(MF)
machine learning
分类号
X936 [环境科学与工程—安全科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数据填补-机器学习的煤与瓦斯突出预测效果研究
陈利成
陈建宏
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部