为分别评估变压器油纸绝缘的老化程度和水分含量,文中通过加速热老化试验和吸潮实验制备了不同老化程度下含水量不同的油浸绝缘纸试品,测试了试品的介损因数频谱和阻抗相位频谱,分析了老化、水分对油纸绝缘频域介电谱特性的影响。采用...为分别评估变压器油纸绝缘的老化程度和水分含量,文中通过加速热老化试验和吸潮实验制备了不同老化程度下含水量不同的油浸绝缘纸试品,测试了试品的介损因数频谱和阻抗相位频谱,分析了老化、水分对油纸绝缘频域介电谱特性的影响。采用多输出支持向量回归算法(multi-output support vectorregression,M-SVR)逼近频域介电谱曲线与油纸绝缘老化和水分之间的非线性映射关系,据此预测油纸绝缘试品的老化程度和水分含量。研究表明,对于含水量在0.5~5.6%范围内、具有不同老化程度的试品,M-SVR对含水量的预测精度较高,而对老化程度的预测精度较低,且均高于RBF神经网络;根据油纸绝缘试品的聚类分析结果,发现与老化程度相关性较大的第1、2类试品,M-SVR对其老化程度的预测精度明显提高,含水量预测精度变化不大。展开更多
文摘宽度学习系统(broad learning system,BLS)因其特征提取能力强、计算效率高而被广泛应用于众多领域.然而,目前BLS主要用于单输出回归,当BLS存在多个输出时,BLS无法有效发掘多个输出权重之间的相关性,会导致模型预测性能的下降.鉴于此,通过Frobenius和L_(2,1)矩阵范数的联合约束,提出多输出宽度学习系统(multi-output broad learning system,MOBLS).首先,在原有BLS的基础上构建新的目标函数,将L2损失函数替换为L_(2,1)形式,L_(2)正则化项替换为Frobenius和L_(2,1)两项;然后,利用交替方向乘子法(alternating direction method of multipliers,ADMM)对新目标函数BLS的输出权重优化求解.利用11个公共数据集和1个实际过程数据集验证了所提系统的有效性.
文摘为分别评估变压器油纸绝缘的老化程度和水分含量,文中通过加速热老化试验和吸潮实验制备了不同老化程度下含水量不同的油浸绝缘纸试品,测试了试品的介损因数频谱和阻抗相位频谱,分析了老化、水分对油纸绝缘频域介电谱特性的影响。采用多输出支持向量回归算法(multi-output support vectorregression,M-SVR)逼近频域介电谱曲线与油纸绝缘老化和水分之间的非线性映射关系,据此预测油纸绝缘试品的老化程度和水分含量。研究表明,对于含水量在0.5~5.6%范围内、具有不同老化程度的试品,M-SVR对含水量的预测精度较高,而对老化程度的预测精度较低,且均高于RBF神经网络;根据油纸绝缘试品的聚类分析结果,发现与老化程度相关性较大的第1、2类试品,M-SVR对其老化程度的预测精度明显提高,含水量预测精度变化不大。