期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合迭代学习和模型预测的重载列车运行控制
被引量:
2
1
作者
孙鹏飞
张传鑫
+2 位作者
蒋春宏
魏咪
王青元
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023年第2期111-119,共9页
为实现重载列车单次行程的高鲁棒高精度轨迹跟踪,根据列车纵向运动特性,构建重载列车多质点的动力学模型;基于利用批次化的运行过程积累控制经验,结合迭代学习和模型预测控制方法设计1种增强抗扰的重载列车跟踪控制器,将重载列车动力学...
为实现重载列车单次行程的高鲁棒高精度轨迹跟踪,根据列车纵向运动特性,构建重载列车多质点的动力学模型;基于利用批次化的运行过程积累控制经验,结合迭代学习和模型预测控制方法设计1种增强抗扰的重载列车跟踪控制器,将重载列车动力学模型转化为基于模型预测控制框架下的线性二次型最优控制模型,用二次型最优控制的速度和位置状态反馈增益表示迭代学习增益,利用批次化积累的控制经验不断提高跟踪性能,实现单次行程的滚动时域优化,提升轨迹跟踪的鲁棒性和精度;对某货运专线上的2万t重载列车进行跟踪控制仿真,分别从时域稳定性和迭代收敛性验证该控制器的稳定性。结果表明:结合迭代学习和模型预测控制方法能够很好地利用重载列车系统操纵重复性特征并实现全程跟踪控制,较传统控制方法跟踪效果更好并能有效降低列车纵向冲动,同时能够动态响应非重复性扰动,满足重载列车运行控制要求。
展开更多
关键词
迭代学习
模型
预测控制
重载列车
多
质点
动力学模型
线性二次型最优控制
下载PDF
职称材料
题名
结合迭代学习和模型预测的重载列车运行控制
被引量:
2
1
作者
孙鹏飞
张传鑫
蒋春宏
魏咪
王青元
机构
西南交通大学电气工程学院
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023年第2期111-119,共9页
基金
国家自然科学基金资助项目(62003283)。
文摘
为实现重载列车单次行程的高鲁棒高精度轨迹跟踪,根据列车纵向运动特性,构建重载列车多质点的动力学模型;基于利用批次化的运行过程积累控制经验,结合迭代学习和模型预测控制方法设计1种增强抗扰的重载列车跟踪控制器,将重载列车动力学模型转化为基于模型预测控制框架下的线性二次型最优控制模型,用二次型最优控制的速度和位置状态反馈增益表示迭代学习增益,利用批次化积累的控制经验不断提高跟踪性能,实现单次行程的滚动时域优化,提升轨迹跟踪的鲁棒性和精度;对某货运专线上的2万t重载列车进行跟踪控制仿真,分别从时域稳定性和迭代收敛性验证该控制器的稳定性。结果表明:结合迭代学习和模型预测控制方法能够很好地利用重载列车系统操纵重复性特征并实现全程跟踪控制,较传统控制方法跟踪效果更好并能有效降低列车纵向冲动,同时能够动态响应非重复性扰动,满足重载列车运行控制要求。
关键词
迭代学习
模型
预测控制
重载列车
多
质点
动力学模型
线性二次型最优控制
Keywords
Iterative learning
Model predictive control
Heavy-haul train
Multi-particle dynamic model
Linear quadratic optimal control
分类号
U284.48 [交通运输工程—交通信息工程及控制]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合迭代学习和模型预测的重载列车运行控制
孙鹏飞
张传鑫
蒋春宏
魏咪
王青元
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部