期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于融合多策略改进的多目标粒子群优化算法 被引量:24
1
作者 杨景明 侯新培 +2 位作者 崔慧慧 呼子宇 穆晓伟 《控制与决策》 EI CSCD 北大核心 2018年第2期226-234,共9页
为进一步提高多目标粒子群算法的收敛性和多样性,提出一种多策略融合改进的多目标粒子群优化算法.首先,引入分解思想以增加Pareto解集的多样性;然后,在速度和位置更新时,引入"多点"变异,即随着迭代次数的递增,根据相应判据对... 为进一步提高多目标粒子群算法的收敛性和多样性,提出一种多策略融合改进的多目标粒子群优化算法.首先,引入分解思想以增加Pareto解集的多样性;然后,在速度和位置更新时,引入"多点"变异,即随着迭代次数的递增,根据相应判据对位置的更新作出不同的变异,避免算法早熟现象的发生;最后,将更新后种群和最优解集进行非支配排序,最优解放入精英外部存档.仿真实验结果表明,与另外4种进化算法对比,所提出算法表现出良好的整体性能. 展开更多
关键词 目标优化 粒子群算法 策略改进 非支配排序
原文传递
基于多策略改进的遗传算法在配电网规划中的应用 被引量:19
2
作者 王海军 董颖华 《电网与清洁能源》 北大核心 2021年第11期47-54,共8页
针对电力电子化配电网规划复杂的优化问题,提出一种基于多策略改进的多目标遗传算法(简称遗传算法)。将遗传算法与配电网规划进行有效结合,研究了遗传算法在规划方案中的染色体组编码方式;对遗传算法进行具有针对性的多策略改进,涉及种... 针对电力电子化配电网规划复杂的优化问题,提出一种基于多策略改进的多目标遗传算法(简称遗传算法)。将遗传算法与配电网规划进行有效结合,研究了遗传算法在规划方案中的染色体组编码方式;对遗传算法进行具有针对性的多策略改进,涉及种群选择、交叉与变异算子以及自适应遗传算子的改进;通过种群修复提高算法的搜索能力,使染色体的决策变量在满足约束的同时,确保种群多样性启发式地进化为规划问题的最优解。通过Schaffer函数与Griewank函数对基于多策略改进的遗传算法进行性能测试,并对其组成内容、搜索特点与搜索寻优的过程分别进行了分析和讨论。结果表明,基于多策略改进的遗传算法在搜索精度与计算效率方面具有较大优势,对于配电网规划优化具有重要价值。 展开更多
关键词 电力电子配电网规划 遗传算法 策略改进 Schaffer函数 Griewank函数
下载PDF
改进哈里斯鹰算法的仓储机器人路径规划研究 被引量:2
3
作者 雷旭 陈静夷 陈潇阳 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1081-1092,共12页
为提高静态环境下仓储移动机器人路径规划效率,解决传统哈里斯鹰(Harris Hawks optimization, HHO)算法在路径规划中存在收敛速度慢且易陷入局部最优的问题,提出了一种基于Tent混沌映射融合柯西反学习变异的哈里斯鹰优化算法(HHO algori... 为提高静态环境下仓储移动机器人路径规划效率,解决传统哈里斯鹰(Harris Hawks optimization, HHO)算法在路径规划中存在收敛速度慢且易陷入局部最优的问题,提出了一种基于Tent混沌映射融合柯西反学习变异的哈里斯鹰优化算法(HHO algorithmbasedon Tentchaotic mapping hybrid Cauchy mutation and inverse learning, TCLHHO)。通过Tent混沌映射增加种群多样性,以提高算法的收敛速度;提出指数型的猎物逃逸能量更新策略,以平衡算法的全局搜索和局部开发能力;通过柯西反学习变异策略对最优个体进行扰动,扩大算法的搜索范围,增强全局搜索能力。根据真实仓储环境搭建二维栅格环境模型,并在Matlab中进行仿真对比实验。结果表明:该算法的规划速度、最优路径长度以及最优路径转折次数较对比算法具有较好的效果,验证了应用于智能仓储环境下改进的HHO路径规划问题的可行性和鲁棒性。 展开更多
关键词 移动机器人 路径规划 哈里斯鹰优化算法 栅格地图 策略改进
下载PDF
基于反向学习与Levy飞行的改进蜂群算法 被引量:6
4
作者 赵挺 孟子航 沈海斌 《传感器与微系统》 CSCD 2017年第1期111-114,共4页
为了优化蜂群算法(BCA),平衡局部搜索与全局搜索,避免算法陷入局部最优,并提高蜂群算法的收敛速度,提出了一种多策略改进的方法优化蜂群算法(MSO—BCA)。算法在种群初始化阶段采用了反向学习(OBL)初始化的方法;在种群更新与邻域搜索中... 为了优化蜂群算法(BCA),平衡局部搜索与全局搜索,避免算法陷入局部最优,并提高蜂群算法的收敛速度,提出了一种多策略改进的方法优化蜂群算法(MSO—BCA)。算法在种群初始化阶段采用了反向学习(OBL)初始化的方法;在种群更新与邻域搜索中采用了具有Levy飞行特征的改进搜索策略。经过对经典Benchmark函数的反复实验并与其他算法的比较,表明了所提出的算法具有良好的加速和收敛效果,提高了全局搜索能力与效率。 展开更多
关键词 蜂群算法 策略改进 反向学习 Levy飞行
下载PDF
基于多策略改进的SMC-GTO电机速度跟踪控制
5
作者 岳凡 艾尔肯·亥木都拉 郑威强 《现代电子技术》 北大核心 2024年第16期69-75,共7页
针对传统控制算法在农业机器人驱动电机速度控制方面存在的响应时间长、跟踪效果差以及参数整定难度大,导致驱动电机转速难以在短时间内收敛至预期值的问题,提出一种基于多策略改进的SMC-GTO电机速度跟踪控制算法。首先,为了缩短驱动电... 针对传统控制算法在农业机器人驱动电机速度控制方面存在的响应时间长、跟踪效果差以及参数整定难度大,导致驱动电机转速难以在短时间内收敛至预期值的问题,提出一种基于多策略改进的SMC-GTO电机速度跟踪控制算法。首先,为了缩短驱动电机速度响应时间,提高速度跟踪效果,设计了一种新型趋近率的改进滑模控制器(I-SMC);其次,为了快速整定滑模控制器参数,引入了多策略改进的大猩猩部队优化算法(MIGTO)。仿真结果表明:I-SMC能够将电机运行过程中的动态误差累计与过冲控制在0 rad/s内,并且可以在0.4 s内响应至预定速度。MIGTO算法在开发和探索阶段均展现出卓越的性能,尤其在整定基于新型趋近率的改进滑模控制器参数工作中表现突出。该研究通过引入I-SMC和MIGTO算法,成功改进了驱动电机速度控制方式,有效缩短了响应时间,提升了速度跟踪效果。 展开更多
关键词 SMC-GTO 策略改进 速度跟踪 农业机器人 驱动电机 参数整定
下载PDF
多策略改进的NGO算法在大坝参数反演中的应用
6
作者 曹文翰 马琳 郝小鸟 《水力发电》 CAS 2024年第5期101-109,共9页
为解决混凝土坝参数优化反演存在的问题,包括寻优性能不佳、精度不足和效率低下等,提出了一种基于多策略改进北方苍鹰算法(MSNGO)的混凝土坝参数优化反演策略。首先,采取多个策略改进北方苍鹰算法,以提高原始算法的寻优能力。接着,结合... 为解决混凝土坝参数优化反演存在的问题,包括寻优性能不佳、精度不足和效率低下等,提出了一种基于多策略改进北方苍鹰算法(MSNGO)的混凝土坝参数优化反演策略。首先,采取多个策略改进北方苍鹰算法,以提高原始算法的寻优能力。接着,结合有限元正分析,构建计算与实测值之间合适的目标函数,利用MSNGO构建智能优化反演模型,并通过并行策略提高反演效率,搜索得到参数反演最优值。通过两个算例对该方法进行验证,并与基准优化算法比较计算结果。结果表明,MSNGO反演策略比其他优化算法收敛速度快、且能跳出局部极值使反演参数结果更为准确,测点计算值与实测值有良好的吻合度,表明该智能优化方法可在混凝土坝参数反演的实际问题中进行应用。 展开更多
关键词 策略改进 北方苍鹰优化算法 位移统计模型 参数反演 弹性模量 混凝土坝
下载PDF
基于改进麻雀搜索算法-BP神经网络的电缆接头线芯温度间接测量方法 被引量:2
7
作者 吴田 祝和升 詹清华 《科学技术与工程》 北大核心 2023年第21期9048-9055,共8页
电缆接头线芯温度实时监测对提升电缆线路载流量和安全运行有重要意义。针对目前测温方法适用性不强、精度低且抗干扰能力弱的问题,提出了一种改进麻雀搜索算法(improved sparrow search algorithm, ISSA)优化反向传播神经网络(back pro... 电缆接头线芯温度实时监测对提升电缆线路载流量和安全运行有重要意义。针对目前测温方法适用性不强、精度低且抗干扰能力弱的问题,提出了一种改进麻雀搜索算法(improved sparrow search algorithm, ISSA)优化反向传播神经网络(back propagation neural network, BPNN)的温度反演间接测量方法。首先引入帐篷(Tent)混沌映射、自适应T分布变异、生产者数量和搜索空间动态调整混合策略对SSA进行改进,然后用改进后的SSA优化BP神经网络超参数。最后通过不同工况下的接头仿真与试验数据,结合自回归滑动平均模型(auto regressive moving average model, ARMA)对表面测温数据进行降噪,基于线路负荷及表面温度对接头线芯温度进行反演,并与粒子群优化算法(particle swarm optimization, PSO)-BP、SSA-BP、灰狼优化算法(grey wolf optimizer, GWO)-BP反演效果进行对比。结果表明改进模型的平均绝对误差不超过0.5℃,反演精度更高,能够实现对电缆接头运行状态的实时有效监测。 展开更多
关键词 麻雀搜索算法 BP神经网络 策略改进 电缆接头 温度间接测量
下载PDF
多策略改进的蛇优化算法
8
作者 权浩迪 刘勇国 +4 位作者 傅翀 朱嘉静 张云 兰刚 李巧勤 《计算机技术与发展》 2024年第5期117-125,共9页
为改进蛇优化算法(Snake Optimizer,SO)在探索方式、变量计算、空间搜索方式和种群更新方式等方面存在的不足,提出了一种多策略改进的蛇优化算法(Improved Snake Optimizer,ISO)。首先,提出探索寻优策略,根据个体相对于优势个体的位置... 为改进蛇优化算法(Snake Optimizer,SO)在探索方式、变量计算、空间搜索方式和种群更新方式等方面存在的不足,提出了一种多策略改进的蛇优化算法(Improved Snake Optimizer,ISO)。首先,提出探索寻优策略,根据个体相对于优势个体的位置更新自身的位置,使种群在前期快速收敛到最优解附近。其次,优化变量计算方式,将SO算法中的指数运算改进为多项式运算,提高SO的时间效率。同时引入动态调整搜索空间的机制,随种群进化迭代次数的增加逐步扩展搜索范围以提高寻优能力。最后,引入优势进化策略,淘汰适应度较差的个体并结合优势个体的基因产生新个体,快速提高种群优势基因比例以增加收敛速度。对不同基准测试函数进行寻优实验,分别与经典SO算法和5种启发式算法进行对比,结果表明ISO具有较强的寻优能力。为进一步验证所提算法的高效性和实用性,将ISO应用于全连接神经网络的优化问题,结果表明基于ISO优化的神经网络具有更优的分类效果。 展开更多
关键词 蛇优化算法 启发式算法 优化问题 策略改进 神经网络
下载PDF
基于多策略免疫遗传算法的无人艇航向自适应控制 被引量:1
9
作者 陈卓 金建海 +2 位作者 张波 包涛 周则兴 《船舶力学》 EI CSCD 北大核心 2023年第9期1273-1282,共10页
针对无人艇在真实水面环境下的航向跟踪控制问题,提出一种基于多策略融合改进免疫遗传算法(MSFI⁃GA)的无人艇航向自适应控制方法。首先,建立无人艇的二阶非线性运动模型和环境风浪流干扰模型。其次,提出一种基于多策略融合改进的免疫遗... 针对无人艇在真实水面环境下的航向跟踪控制问题,提出一种基于多策略融合改进免疫遗传算法(MSFI⁃GA)的无人艇航向自适应控制方法。首先,建立无人艇的二阶非线性运动模型和环境风浪流干扰模型。其次,提出一种基于多策略融合改进的免疫遗传算法,通过引入混沌初始化、向量角相似度及自适应差分接种等策略,改善基本算法收敛缓慢、易陷入局部最优的缺点;在此基础上,设计基于MSFIGA的无人艇航向自适应控制器及性能评价函数,以实现对无人艇控制参数的自适应优化。最后,通过对比仿真试验和在线仿真试验验证该方法的优越性和实用性。 展开更多
关键词 无人艇 航向跟踪 自适应控制 免疫遗传算法 策略改进
下载PDF
基于多策略改进蝙蝠算法的文本特征选择
10
作者 侯乔 陈宏伟 《湖北工业大学学报》 2019年第5期64-66,71,共4页
特征选择是文本分类过程的重要处理步骤,在其他分类预处理环节和分类算法确定的条件下,通过传统特征选择方法很难大幅度提高文本分类的准确率。针对此问题,介绍了一个基于改进蝙蝠优化的新的文本特征选择方法,即利用传统的特征选择方法... 特征选择是文本分类过程的重要处理步骤,在其他分类预处理环节和分类算法确定的条件下,通过传统特征选择方法很难大幅度提高文本分类的准确率。针对此问题,介绍了一个基于改进蝙蝠优化的新的文本特征选择方法,即利用传统的特征选择方法对原始特征进行预选,在此基础上使用高斯局部扰动和自适应调节权重机制改进传统蝙蝠群算法,并以二进制编码形式对预选特征进行优选,分类准确率作为个体的适应度,提出了多策略改进蝙蝠算法的文本特征选择算法MS-BA,实现对文本特征选择优化模型的高效求解。结果表明,采用MS-BA进行特征优选后,其分类准确率得到有效提高。 展开更多
关键词 特征选择 蝙蝠算法 文本分类 策略改进
下载PDF
基于多策略ISOA优化SVM的变压器故障诊断研究 被引量:14
11
作者 郑业爽 李世春 鲁玲 《智慧电力》 北大核心 2023年第2期38-44,共7页
针对由支持向量机(SVM)参数难以确定而导致的变压器故障诊断精度低及海鸥优化算法(SOA)易陷入局部寻优的问题,提出一种多策略改进海鸥优化算法(ISOA)优化SVM的变压器故障诊断方法。首先,提出一种多策略的改进方法来全方面提升SOA的寻优... 针对由支持向量机(SVM)参数难以确定而导致的变压器故障诊断精度低及海鸥优化算法(SOA)易陷入局部寻优的问题,提出一种多策略改进海鸥优化算法(ISOA)优化SVM的变压器故障诊断方法。首先,提出一种多策略的改进方法来全方面提升SOA的寻优性能;然后,利用ISOA对SVM内部参数进行优化,构建基于ISOASVM的变压器故障诊断模型;最后,将油中气体溶解分析(DGA)数据的特征提取结果输入到ISOA-SVM模型中进行变压器故障诊断。实例分析表明,所提ISOA-SVM模型诊断精度更优。 展开更多
关键词 变压器 故障诊断 策略改进方法 海鸥优化算法 支持向量机
下载PDF
基于HPO-VMD和MISMA-DHKELM的短期光伏功率组合预测 被引量:2
12
作者 王超 蔺红 庞晓虹 《太阳能学报》 EI CSCD 北大核心 2023年第12期65-73,共9页
为提高光伏发电功率的预测精度,提出一种优化变分态分解(VMD)、多策略改进黏菌优化算法(MISMA)和深度混合核极限学习机(DHKELM)的短期光伏功率组合预测方法。首先,利用VMD分解技术将不同天气类型的功率数据分解成多个模态分量,为避免模... 为提高光伏发电功率的预测精度,提出一种优化变分态分解(VMD)、多策略改进黏菌优化算法(MISMA)和深度混合核极限学习机(DHKELM)的短期光伏功率组合预测方法。首先,利用VMD分解技术将不同天气类型的功率数据分解成多个模态分量,为避免模态分量间的频率混淆,使用狩猎者(HPO)算法优化VMD的关键参数-分解层数和惩罚因子;然后,针对不同天气类型分解的各分量建立DHKELM预测模型,并采用MISMA优化DHKELM模型的超参数;最后,将各模态分量预测结果求和重构作为最终预测结果。利用新疆某光伏电站的实际数据进行实验分析,实验结果表明:该方法在不同天气类型下均能实现较好的预测效果,预测精度明显优于单一预测模型,与其他方法对比,验证了该方法的有效性。 展开更多
关键词 光伏功率 变分模态分解 组合预测 策略改进黏菌算法 深度混合核极限学习机
下载PDF
一种多策略改进鲸鱼优化算法的混沌系统参数辨识
13
作者 潘悦悦 吴立飞 杨晓忠 《智能系统学报》 CSCD 北大核心 2024年第1期176-189,共14页
针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初... 针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初始种群,采用非线性收敛因子和自适应权重,提高算法收敛速度,为了避免算法陷入局部最优,动态选择自适应t分布或蚁狮优化算法更新后期位置,提高处理局部极值的能力。通过对10个基准函数和高维测试函数进行仿真试验,表明MIWOA具有良好的稳定性和收敛精度。将MIWOA应用于辨识Rossler和Lu混沌系统参数,仿真结果优于现有成果,表明本文MIWOA辨识混沌系统参数的高效性和实用性。 展开更多
关键词 策略改进鲸鱼优化算法 混沌系统 参数辨识 Chebyshev混沌映射 自适应t分布 蚁狮优化算法 基准函数 Wilcoxon秩和检验
下载PDF
大坝渗压混合预测的STL分解-集成学习模型
14
作者 王晓玲 王成 +2 位作者 王佳俊 余佳 余红玲 《水力发电学报》 CSCD 北大核心 2024年第9期106-123,共18页
针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解... 针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解和集成学习策略的渗压可解释混合预测模型。该模型首先通过时间序列分解(STL)将原始渗压时间序列分解为季节项、趋势项和余项,以避免现有模型在渗流压力预测中模式混淆的不足;然后,不同成分的变化特征可采用多策略改进麻雀搜索算法(MSISSA)优化的核极限学习机(KELM)和卷积神经网络组合门控递归单元(CNN-GRU)组成的集成学习模型来识别;此外,还采用单次单因子法(OFAT)分析影响因素对渗流压力不同特征成分的贡献,从而改变输入因素的权重,以提高模型的可解释性。案例分析结果表明,在确保模型可解释性的同时,所提出的混合模型与基于单一算法的模型相比,预测精度平均提高了48.44%;与其他集成预测模型相比,预测精度平均提高了11.42%,验证了所提模型的有效性,为大坝渗流安全监控提供了新的建模方法。 展开更多
关键词 大坝渗压预测 STL时序分解 策略改进麻雀搜索算法 集成学习
下载PDF
基于改进麻雀搜索算法的水质模型多参数反演
15
作者 彭杨 杨德铭 +1 位作者 罗诗琦 张志鸿 《中国农村水利水电》 北大核心 2024年第7期102-109,116,共9页
水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型... 水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型;然后针对麻雀搜索算法(Sparrow Search Algorithm,SSA)求解精度低、稳定性不足和易陷入局部最优等问题,引入Sine混沌映射和对立学习、转移概率以及差分变异3个策略,分别从提高初始种群多样性、扩大搜索空间以及增强种群跳出局部最优的能力三方面对SSA算法进行改进,提出了一种多策略改进的麻雀搜索算法(Multi-strategy Improved Sparrow Search Algorithm,MISSA),并将其应用于Dobbins-Camp BOD-DO水质多参数反演模型的求解;最后通过数值实验将得到的反演结果与SSA算法、模拟退火算法、粒子群算法、遗传算法四种优化算法进行对比,并探讨了参数初值选取和观测噪声水平对反演结果的影响。结果表明:MISSA算法的计算性能明显优于对照组中的4种算法,且能显著降低初值选取对BOD-DO水质模型参数反演结果的影响,当观测数据的噪声水平不超过5%时,MISSA算法可有效提高反演结果的稳定性。该结果验证了MISSA算法在反演Dobbins-Camp BOD-DO水质模型参数的有效性,为水质模型参数求解提供有益参考。 展开更多
关键词 BOD-DO水质模型 参数反演 策略改进的麻雀搜索算法 初值选取 观测噪声水平
下载PDF
基于MISSA-SVM模型的边坡稳定性预测及应用
16
作者 王团辉 王超 +2 位作者 吴顺川 王琦玮 徐健珲 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期135-144,共10页
为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针... 为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型。将MISSA-SVM模型应用到大溪滑坡等9组边坡工程实例进行验证。结果表明:MISSA-SVM模型的准确率、精确率、召回率、F_(1)分数、均方误差(MSE)和曲线下面积(AUC)分别达到96.29%、92.3%、100%、0.96、0.016和0.967,均优于SSA优化的SVM模型和BP模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力。 展开更多
关键词 策略改进麻雀搜索算法(MISSA) 支持向量机(SVM) 边坡稳定性 正余弦算法(SCA) 预测指标
下载PDF
基于VMD-MWOA-ELM的日前光伏功率预测
17
作者 刘丽桑 郭凯琪 +1 位作者 陈健 郭琳 《福建工程学院学报》 CAS 2023年第3期269-276,共8页
为了提高光伏发电功率的预测精度,提出一种结合变分模态分解、多策略改进的鲸鱼优化算法和极限学习机的光伏日前预测方法。利用变分模态分解影响光伏功率的关键气象因素,获得不同特征规律的本征模态分量,降解了数据的随机波动性,减少了... 为了提高光伏发电功率的预测精度,提出一种结合变分模态分解、多策略改进的鲸鱼优化算法和极限学习机的光伏日前预测方法。利用变分模态分解影响光伏功率的关键气象因素,获得不同特征规律的本征模态分量,降解了数据的随机波动性,减少了噪声的影响。引入鲸鱼优化算法,利用多策略改进的鲸鱼优化算法(MWOA)对ELM模型的权重和偏置系数进行优化,获得最终的光伏功率预测结果。仿真结果验证了所提方法的有效性与优越性。 展开更多
关键词 相关性分析 变分模态分解 策略改进的鲸鱼优化算法 极限学习机 光伏发电功率预测
下载PDF
基于NRS-ISSA-SVM的砂土液化判别模型 被引量:9
18
作者 姜礼涛 周爱红 +3 位作者 袁颖 刘育林 宁志杰 牛建广 《地震工程学报》 CSCD 北大核心 2022年第3期570-578,共9页
针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Su... 针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Support Vector Machine,SVM)参数C和g,构建了SVM砂土液化判别模型。以吉林松原地区的42组实例作为总体样本集,其中35组作为训练集,另外7组作为测试集,利用邻域粗糙集对9个影响因素约简得到4个因素,然后输入ISSA-SVM模型进行预测,并进行了约简得到的因素敏感性分析。结果表明:因素约简剔除了冗余属性,降低了模型复杂度;ISSA算法具有极强的探索性、收敛性和局部逃逸能力;相比于其他模型,NRS-ISSA-SVM砂土液化判别模型精度更高,泛化能力更强;建议要判别砂土的液化状态,需要准确查明水位埋深、地震烈度、标准贯入击数,非液化土层厚度这4个因素,尤其是前三个因素。通过易获取的影响因素建立NRS-ISSA-SVM砂土液化判别模型,不仅可准确地判断该区域其余未知点的砂土状态,还可为其他类似问题提供参考借鉴。 展开更多
关键词 砂土液化 预测模型 支持向量机 邻域粗糙集 策略融合的改进麻雀搜索算法
下载PDF
基于KPCA-ISSA-SVR的盾构施工诱导地面沉降预测模型研究
19
作者 刘育林 周爱红 +1 位作者 姜礼涛 袁颖 《河北地质大学学报》 2022年第5期42-49,共8页
为了准确预测盾构施工诱发的地面沉降量,论文提出了核主成分—多策略融合的改进麻雀搜索算法优化支持向量回归机(KPCA-ISSA-SVR)预测模型。以73组地面沉降实例为总体样本集构建训练及测试样本,利用核主成分分析对影响地面沉降的地质因... 为了准确预测盾构施工诱发的地面沉降量,论文提出了核主成分—多策略融合的改进麻雀搜索算法优化支持向量回归机(KPCA-ISSA-SVR)预测模型。以73组地面沉降实例为总体样本集构建训练及测试样本,利用核主成分分析对影响地面沉降的地质因素及施工因素进行特征提取的基础上,采用ISSA算法优化参数C和g,建立KPCA-ISSA-SVR地面沉降量预测模型,并与核主成分-Tent混沌映射改进麻雀搜索算法优化支持向量回归机(KPCA-TentSSA-SVR)、核主成分—麻雀搜索算法优化支持向量回归机(KPCA-SSA-SVR)、麻雀搜索算法优化支持向量回归机(ISSA-SVR)模型进行对比。结果表明:KPCA能够剔除冗余信息,降低模型复杂度;ISSA全局寻优及局部探索能力强,能高效准确地确定模型参数;KPCA-ISSA-SVR预测精度更高,稳定性更强。 展开更多
关键词 盾构施工 地面沉降 核主成分 策略融合改进麻雀搜索算法 支持向量回归机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部