在传统电力系统无功优化(Reactive Power Optimization,RPO)模型中引入电压水平指标,建立了以网损最小,电压水平最好为目标的多目标差分进化算法(Differential Evolution Algorithm)的模型。针对基本差分进化算法易陷入局部最优解、收...在传统电力系统无功优化(Reactive Power Optimization,RPO)模型中引入电压水平指标,建立了以网损最小,电压水平最好为目标的多目标差分进化算法(Differential Evolution Algorithm)的模型。针对基本差分进化算法易陷入局部最优解、收敛速度慢的缺点,提出一种具有自适应参数策略的改进差分进化算法并首次用于多目标电力系统无功优化问题。通过在算法进化过程中调整变异因子F和交叉因子CR,在初期增加种群的多样性、扩大全局搜索区域;从而可以避免算法陷入局部最优解;同时在后期也加快了收敛速度。将该算法用于电力系统无功优化并仿真计算了IEEE-14节点标准测试系统,结果验证模型和算法的有效性。展开更多
针对多目标动态柔性作业车间调度问题,提出一种改进的多目标差分进化算法进行求解。在差分进化算法中引入自适应交叉变异算子,提高算法的全局搜索能力;在选择排序时引入基于免疫学原理的快速非支配排序法,提高解集的质量。提出改进的TOP...针对多目标动态柔性作业车间调度问题,提出一种改进的多目标差分进化算法进行求解。在差分进化算法中引入自适应交叉变异算子,提高算法的全局搜索能力;在选择排序时引入基于免疫学原理的快速非支配排序法,提高解集的质量。提出改进的TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)—G1—熵权综合决策方法。通过Nash均衡理论计算得出G1—熵权法的综合权重;将综合权重与TOPSIS评价体系组合对各调度方案进行评价。通过实验仿真验证了优化调度算法在寻优能力上的优越性以及综合决策方法的有效性。展开更多
文摘在传统电力系统无功优化(Reactive Power Optimization,RPO)模型中引入电压水平指标,建立了以网损最小,电压水平最好为目标的多目标差分进化算法(Differential Evolution Algorithm)的模型。针对基本差分进化算法易陷入局部最优解、收敛速度慢的缺点,提出一种具有自适应参数策略的改进差分进化算法并首次用于多目标电力系统无功优化问题。通过在算法进化过程中调整变异因子F和交叉因子CR,在初期增加种群的多样性、扩大全局搜索区域;从而可以避免算法陷入局部最优解;同时在后期也加快了收敛速度。将该算法用于电力系统无功优化并仿真计算了IEEE-14节点标准测试系统,结果验证模型和算法的有效性。
文摘针对多目标动态柔性作业车间调度问题,提出一种改进的多目标差分进化算法进行求解。在差分进化算法中引入自适应交叉变异算子,提高算法的全局搜索能力;在选择排序时引入基于免疫学原理的快速非支配排序法,提高解集的质量。提出改进的TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)—G1—熵权综合决策方法。通过Nash均衡理论计算得出G1—熵权法的综合权重;将综合权重与TOPSIS评价体系组合对各调度方案进行评价。通过实验仿真验证了优化调度算法在寻优能力上的优越性以及综合决策方法的有效性。