期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多波段红外图像的海面舰船目标检测 被引量:11
1
作者 仇荣超 娄树理 +1 位作者 李廷军 宫剑 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第3期698-704,共7页
现有的基于单个红外宽波段的海面舰船目标探测系统在面对复杂海天背景、岛岸背景、恶劣天气、亮带干扰或诱饵弹干扰等情况时,系统的探测率、虚警率、探测距离等性能指标均会受到严重的影响;为此,开展了基于多波段红外图像的海面舰船目... 现有的基于单个红外宽波段的海面舰船目标探测系统在面对复杂海天背景、岛岸背景、恶劣天气、亮带干扰或诱饵弹干扰等情况时,系统的探测率、虚警率、探测距离等性能指标均会受到严重的影响;为此,开展了基于多波段红外图像的海面舰船目标检测方法的研究。通过中波红外多波段数据采集系统实际采集107组五个中波红外波段的图像;波段1—5分别为3.7~4.8, 3.7~4.1, 4.4~4.8, 3.7~3.9和4.65~4.75μm;对多波段图像进行手动标注构建样本数据集,其中,正样本舰船目标298个,负样本非舰船目标353个。对于多波段红外图像,首先进行PCA降维并采用选择性搜索算法生成初始目标候选区域;针对候选区域中存在大量明显的非舰船目标区域的问题,利用积分图像计算候选区域的局部对比度,依据红外舰船目标的几何和灰度特征从初始目标候选区域中筛选出舰船目标可能性大的区域作为舰船目标候选区域。然后对舰船目标候选区域进行拓展以融入局部上下文信息,对于候选区域对应的5波段红外图像,分别提取每个波段图像的稠密SIFT特征,并将128维SIFT特征向量降为64维,融入SIFT特征的空间和波段位置分布信息得到新的特征向量,基于高斯混合模型对候选区域的特征向量集合进行编码融合得到舰船目标候选区域的费舍尔向量表示,最后利用线性SVM分类器识别出舰船目标。对多波段图像进行舰船目标候选区域生成实验,所提出的基于红外舰船目标的几何和灰度特征的约束方法可以有效地克服选择性搜索算法的不足,从初始目标候选区域中快速定位出舰船目标候选区域,对25组多波段图像进行实验,舰船目标候选区域生成的整体耗时为0.353 s,定位舰船目标区域耗时0.005 s。对100个正负样本进行目标识别测试,所提出的目标识别算法融合了目标的多波段图像特征信息,通过引入费� 展开更多
关键词 舰船目标检测 波段红外图像 选择性搜索算法 费舍尔向量
下载PDF
一种多波段红外图像联合配准和融合方法 被引量:6
2
作者 李英杰 张俊举 +2 位作者 常本康 钱芸生 刘磊 《电子与信息学报》 EI CSCD 北大核心 2016年第1期8-14,共7页
多波段红外图像配准和融合是得到更高质量夜视图像的关键步骤。过去,这两种方法被定义为两个独立的图像处理过程。因此,在融合过程中忽略配准误差会严重影响最后的融合质量。为解决上述问题,该文提出一种新的迭代优化方法,该方法通过寻... 多波段红外图像配准和融合是得到更高质量夜视图像的关键步骤。过去,这两种方法被定义为两个独立的图像处理过程。因此,在融合过程中忽略配准误差会严重影响最后的融合质量。为解决上述问题,该文提出一种新的迭代优化方法,该方法通过寻找最优配准参数来获得最佳的融合性能,采用基于人眼感兴趣区域的清晰度指标作为融合质量评价函数来完善配准过程,采用模拟退火法解决联合优化问题。实验结果表明,针对夜视领域的多波段红外图像,该方法在配准精度、融合质量以及稳定性上明显优于常用的配准和融合算法。 展开更多
关键词 图像融合 图像配准 波段红外图像 清晰度指标
下载PDF
多波段前视红外图像融合的海面杂乱背景平滑方法 被引量:6
3
作者 仇荣超 吕俊伟 +3 位作者 宫剑 娄树理 修炳楠 马新星 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第4期1120-1126,共7页
为了有效地克服单波段前视红外图像中存在的点状杂波、条状波浪以及局部高亮区域等随机杂乱背景的影响,开展了基于多波段前视红外图像融合的海面杂乱背景平滑方法的研究。充分利用多波段前视红外图像之间的互补性和差异性,通过融合多波... 为了有效地克服单波段前视红外图像中存在的点状杂波、条状波浪以及局部高亮区域等随机杂乱背景的影响,开展了基于多波段前视红外图像融合的海面杂乱背景平滑方法的研究。充分利用多波段前视红外图像之间的互补性和差异性,通过融合多波段红外图像的信息,旨在平滑抑制海面杂乱背景并保持舰船目标的特征信息,为舰船目标检测提供一幅优质的图像。首先利用离散小波变换将多波段源图像分解为低频子带和高频子带,其中,高频子带主要包含了图像中背景以及舰船目标的细节信息,低频子带主要包含了图像的亮度以及对比度信息;对于高频子带,在基于高频系数取绝对值最大法得到高频融合图像后,计算每个像素的区域能量来对高频融合图像进行调制以抑制图像背景的细节信息而保留舰船目标的细节信息;对于低频子带,通过平均法融合低频子带并利用导向滤波对低频融合图像进行平滑滤波处理;最后对高频融合图像和低频融合图像进行小波逆变换得到的重构图像即为融合图像。对实际采集的多波段前视红外图像进行仿真实验,将该方法与双边滤波、导向滤波、梯度最小化、相对全变分、双边纹理滤波和滚动滤波共6种图像平滑滤波方法进行对比。结果表明:所提出的方法通过有效地融合多波段图像的信息,将空间域的平滑处理转换到频率域中进行,能够很好地平滑海面随机杂乱背景并较好地保持舰船目标的结构、灰度以及对比度信息,大大增强了舰船目标的可分离性,其图像平滑性能优于作为对比的6种方法。 展开更多
关键词 波段前视红外图像 图像平滑 小波变换 导向滤波
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部