期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多模态深度学习综述 被引量:40
1
作者 刘建伟 丁熙浩 罗雄麟 《计算机应用研究》 CSCD 北大核心 2020年第6期1601-1614,共14页
在多模态深度学习发展前期总结当前多模态深度学习,发现在不同多模态组合和学习目标下,多模态深度学习实现过程中的共有问题,并对共有问题进行分类,叙述解决各类问题的方法。具体来说,从涉及自然语言、视觉、听觉的多模态学习中考虑了... 在多模态深度学习发展前期总结当前多模态深度学习,发现在不同多模态组合和学习目标下,多模态深度学习实现过程中的共有问题,并对共有问题进行分类,叙述解决各类问题的方法。具体来说,从涉及自然语言、视觉、听觉的多模态学习中考虑了语言翻译、事件探测、信息描述、情绪识别、声音识别和合成以及多媒体检索等方面研究,将多模态深度学习实现过程中的共有问题分为模态表示、模态传译、模态融合和模态对齐四类,并对各类问题进行子分类和论述,同时列举了为解决各类问题产生的神经网络模型。最后论述了实际多模态系统、多模态深度学习研究中常用的数据集和评判标准,并展望了多模态深度学习的发展趋势。 展开更多
关键词 模态 深度学习 神经网络 模态表示 模态传译 模态融合 模态对齐
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部