-
题名基于带权重多样例学习的视觉跟踪算法
被引量:3
- 1
-
-
作者
毛征
贾文洋
杜文彬
梅伟军
-
机构
北京工业大学电子信息与控制工程学院
-
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2017年第2期217-223,共7页
-
基金
国家自然科学基金资助项目(81370038)
-
文摘
原始在线加权的多示例学习跟踪假设每个示例是独立且在包中的贡献均相同,同时为所有正样本赋予相同的权重,这不符合"包中的示例与目标位置的远近,对目标贡献程度是不一样"的事实.再加上原始算法采取单一特征无法准确和全面地表示目标包中所包含的示例,从而影响了跟踪算法的鲁棒性.针对原始算法的这些问题,提出一种基于带权重多样例学习的视觉跟踪方法.该方法同时融合多特征(HOG特征和Haar特征),在多示例学习框架下同时训练分类器,并通过样本特征相似度的比较来赋予不同的权重.对不同场景的图像序列进行实验,通过在公共测试集上与多种主流算法做对比,显示这样得到的目标外表模型对于前景和背景具有更高的区分能力.结果表明:该算法具有更高的准确性和更强的适应性,可以有效克服传统多示例学习中的分类器退化问题.
-
关键词
多样例学习
多特征
视觉跟踪
-
Keywords
multiple instance learning
more features
visual tracking
-
分类号
TP391.9
[自动化与计算机技术—计算机应用技术]
-