期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合粒子群算法与任务分配协调策略的仓储多机器人任务分配 被引量:8
1
作者 牛龙辉 陈海洋 季野彪 《西安工程大学学报》 CAS 2020年第6期73-79,共7页
针对粒子群算法(particle swarm optimization,PSO)求解仓储物流多机器人任务分配(multi-robot task allocation,MRTA)中出现的重叠及过载问题,提出一种基于PSO算法的任务分配方法,实现对多机器人任务的合理分配。考虑到MRTA问题,定义... 针对粒子群算法(particle swarm optimization,PSO)求解仓储物流多机器人任务分配(multi-robot task allocation,MRTA)中出现的重叠及过载问题,提出一种基于PSO算法的任务分配方法,实现对多机器人任务的合理分配。考虑到MRTA问题,定义分配半径的概念,建立多目标优化任务分配数学模型,采用PSO算法优化出解空间,然后利用协调策略对解空间出现的任务重叠、过载进行调节,保证系统获得最高收益。与PSO算法及灰狼算法对比仿真实验结果表明:提出的方法任务完成时间为74.0492 s,远低于其他2种算法的101.2631 s、82.4279 s,在系统收益方面,性能指标函数值稳定在114.87,均高于其他2种算法,且收敛速度很快。提出的方法在解决多机器人任务分配问题方面更加合理有效。 展开更多
关键词 粒子群算法(PSO) 仓储物流 分配半径 机器人任务分配(mrta) 分配协调策略
下载PDF
多策略遗传算法求解多机器人任务分配问题
2
作者 陈海洋 刘妍 +1 位作者 都威 黄琦 《西安工程大学学报》 CAS 2024年第6期76-82,共7页
针对遗传算法(genetic algorithm,GA)求解多机器人任务分配(multi-robot task allocation,MRTA)时容易陷入局部最优以及效率不高的问题,提出一种多策略遗传算法(简称DIHA-GA)实现对多个任务的合理分配。首先,采用双染色体编码策略来简... 针对遗传算法(genetic algorithm,GA)求解多机器人任务分配(multi-robot task allocation,MRTA)时容易陷入局部最优以及效率不高的问题,提出一种多策略遗传算法(简称DIHA-GA)实现对多个任务的合理分配。首先,采用双染色体编码策略来简化编码方式;其次,将种群分成3个部分来使种群在保持随机性的同时增强染色体的质量;再次,采用启发式交叉算子来拓展解的搜索范围,加大算法跳出局部最优的能力;最后,使用自适应交叉概率和变异概率来使算法更快找到最优解。结果表明:在任务数为20和40这2种情况下,DIHA-GA相比于混合粒子群算法(hybrid particle swarm optimization,HPSO)距离平均值分别减少了14.46 m和17.36 m,距离最小值分别减少了14.89 m和20.86 m,这说明DIHA-GA所得解更接近最优解;DIHA-GA比改进蚁群算法(improved ant colony optimization,IACO)所得距离平均值分别减少了21.32 m和18.73 m,距离最小值分别减少了23.43 m和22.32 m,这是由于IACO过早收敛并且难以跳出局部最优导致的。通过比较,验证了DIHA-GA在求解MRTA问题上的有效性。 展开更多
关键词 机器人任务分配(mrta) 仓储物流 遗传算法(GA) 改良圈策略 混合粒子群算法 蚁群算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部