期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
一种引入核心实体关注度评估的KBQA算法
1
作者 赵卫东 晋艳峰 +1 位作者 张睿 林沿铮 《计算机科学》 CSCD 北大核心 2024年第11期239-247,共9页
目前针对复杂语义和复杂句法的知识库问答(Knowledge Base Question Answering,KBQA)研究层出不穷,但它们多以已知问题的主题实体为前提,对问题中多意图和多实体重视不足,而问句中对核心实体的识别是理解自然语言的关键。针对此问题,提... 目前针对复杂语义和复杂句法的知识库问答(Knowledge Base Question Answering,KBQA)研究层出不穷,但它们多以已知问题的主题实体为前提,对问题中多意图和多实体重视不足,而问句中对核心实体的识别是理解自然语言的关键。针对此问题,提出了一种引入核心实体关注度的KBQA模型。该模型基于注意力机制及注意力增强技术,对识别到的实体引用(Mention)进行重要性评估,得到实体引用关注度,去除潜在干扰项,捕获用户提问的核心实体,解决了多实体、多意图问句的语义理解问题。此外,还将评估的结果作为重要权重引入后续的问答推理中。在英文MetaQA数据集、多实体问句MetaQA数据集、多实体问句HotpotQA数据集上,与KVMem,GraftNet,PullNet等模型进行了对比实验。结果表明,针对多实体问句,所提模型在Hits@n、准确率、召回率等评估指标上均取得了更好的实验效果。 展开更多
关键词 知识库问答 意图识别 实体关注度 实体 意图
下载PDF
结合句法特征和卷积神经网络的多意图识别模型 被引量:11
2
作者 杨春妮 冯朝胜 《计算机应用》 CSCD 北大核心 2018年第7期1839-1845,1852,共8页
短文本的多意图识别是口语理解(SLU)中的难题,因短文本的特征稀疏、字数少但包含信息量大,在分类问题中难以提取其有效特征。为解决该问题,将句法特征和卷积神经网络(CNN)进行结合,提出一种多意图识别模型。首先,将句子进行依存句法分... 短文本的多意图识别是口语理解(SLU)中的难题,因短文本的特征稀疏、字数少但包含信息量大,在分类问题中难以提取其有效特征。为解决该问题,将句法特征和卷积神经网络(CNN)进行结合,提出一种多意图识别模型。首先,将句子进行依存句法分析以确定是否包含多意图;然后,利用词频-逆文档频率(TF-IDF)和训练好的词向量计算距离矩阵,以确定意图的个数;其次,把该距离矩阵作为CNN模型的输入,进行意图分类;最后,判断每个意图的情感极性,计算用户的真实意图。采用现有的智能客服系统的真实数据进行实验,实验结果表明,结合句法特征的CNN模型在10个意图上的单分类精准率达到93.5%,比未结合句法特征的CNN模型高1.4个百分点;而在多意图识别上,精准率比其他模型提高约30个百分点。 展开更多
关键词 口语理解 意图识别 句法特征 卷积神经网络 自然语言
下载PDF
胶囊网络用于短文本多意图识别的研究 被引量:9
3
作者 刘娇 李艳玲 林民 《计算机科学与探索》 CSCD 北大核心 2020年第10期1735-1743,共9页
意图识别是人机对话系统中口语理解的关键子任务。考虑到当前用户表达存在多个意图的问题,主要采用胶囊网络构造基于单意图标记的多意图分类器对用户表达的多种意图进行识别。为了保证意图文本的特征质量,通过在胶囊网络中增加卷积胶囊... 意图识别是人机对话系统中口语理解的关键子任务。考虑到当前用户表达存在多个意图的问题,主要采用胶囊网络构造基于单意图标记的多意图分类器对用户表达的多种意图进行识别。为了保证意图文本的特征质量,通过在胶囊网络中增加卷积胶囊层提取意图文本的深层次语义信息,同时利用胶囊网络中的动态路由将特征胶囊动态分配到意图胶囊类别中,通过设置阈值大小判别多种意图存在的概率,从而完成多意图识别任务。实验结果表明在多意图识别任务中,胶囊网络优于卷积神经网络,而增加卷积胶囊层的胶囊网络可以提升多意图识别的性能效果,在中文和英文数据集上的宏平均F1值分别达到77.3%和94.7%。 展开更多
关键词 意图识别 深度学习 口语理解 对话系统
下载PDF
联合多意图识别与语义槽填充的双向交互模型 被引量:3
4
作者 李实 孙镇鹏 《计算机工程与应用》 CSCD 北大核心 2024年第5期130-138,共9页
意图识别与语义槽填充是口语理解的两个主要任务,两者具有高度相关性,通常进行联合训练。随着口语理解任务的深入,研究发现用户在现实场景中的话语往往含有多个意图。但部分联合模型只能识别用户话语中的单个意图,未能充分建模多个意图... 意图识别与语义槽填充是口语理解的两个主要任务,两者具有高度相关性,通常进行联合训练。随着口语理解任务的深入,研究发现用户在现实场景中的话语往往含有多个意图。但部分联合模型只能识别用户话语中的单个意图,未能充分建模多个意图和语义槽之间的关联性。考虑到话语中多个意图的信息可以引导语义槽填充,语义槽信息也可以帮助意图更好的识别,模型采用图注意力网络建立意图和语义槽之间的双向交互。具体的,将两个任务双向关联以便模型能够挖掘多个意图与语义槽之间的关系,同时引入两个任务的标签信息使模型能够学习到话语上下文和标签的关系,从而提高意图识别与语义槽填充的准确率,优化口语理解的整体性能。实验表明,模型在MixATIS和MixSNIPS两个多意图数据集上对比其他模型性能得到了显著提升。 展开更多
关键词 口语理解 意图识别 语义槽填充 联合模型
下载PDF
基于内容和用户行为的查询聚类 被引量:4
5
作者 程舒杨 熊锦华 +1 位作者 公帅 程学旗 《中文信息学报》 CSCD 北大核心 2016年第2期121-127,共7页
现有方法没有有效利用查询文本特征、点击行为和session信息来挖掘用户的搜索意图,获取的查询特征对于多意图查询在不同意图下的区分度不足,对于多意图查询的相关查询聚类效果不佳。针对以上问题,该文提出了基于查询图信息的GPLSI模型,... 现有方法没有有效利用查询文本特征、点击行为和session信息来挖掘用户的搜索意图,获取的查询特征对于多意图查询在不同意图下的区分度不足,对于多意图查询的相关查询聚类效果不佳。针对以上问题,该文提出了基于查询图信息的GPLSI模型,并利用该模型学习所得的查询特征进行查询聚类。基于查询图信息的GPLSI模型利用查询的词语、点击和session共现现象,从查询的文本特征、点击行为和session信息等多个方面来模拟查询意图的产生和表现,学习查询在不同搜索意图上的概率分布。最后,实验结果验证了基于查询图信息的PLSI模型用于查询相似度计算和多意图查询聚类中的有效性。 展开更多
关键词 查询聚类 意图查询 搜索意图
下载PDF
基于图注意力网络的多意图识别与语义槽填充联合模型
6
作者 张玉慧 陈黎 +1 位作者 琚生根 李每文 《软件学报》 EI CSCD 北大核心 2024年第12期5509-5525,共17页
口语理解是任务型对话系统的关键任务,主要由语义槽填充和意图识别两个子任务组成.目前主流的方法是对语义槽填充和意图识别进行联合建模.虽然这种方法在语义槽填充和意图识别上都取得了不错的效果,但依然存在联合建模中意图识别和语义... 口语理解是任务型对话系统的关键任务,主要由语义槽填充和意图识别两个子任务组成.目前主流的方法是对语义槽填充和意图识别进行联合建模.虽然这种方法在语义槽填充和意图识别上都取得了不错的效果,但依然存在联合建模中意图识别和语义槽填充交互过程的错误传播问题以及多意图场景下多意图信息与语义槽信息的错误对应问题.针对上述问题,提出一种基于图注意力网络的多意图识别与语义槽填充联合模型(WISM).WISM模型通过细粒度(单词级)意图与语义槽建立单词级别一对一映射关系以修正多意图信息与语义槽之间的错误对应关系,然后通过构建单词-意图-语义槽的交互图,并利用细粒度下的图注意力网络建立两个任务之间的双向联系以此来降低交互过程中错误传播问题.在MixSINPS和MixATIS数据集上的实验结果表明,WISM相较于现有的最新模型在语义准确率分别提高2.58%和3.53%.所提模型在提高语义准确率的同时展示了多意图信息与语义槽之间的映射关系. 展开更多
关键词 口语理解 意图识别 语义槽填充 联合建模 图注意力网络
下载PDF
试析击剑运动员的多意图战术 被引量:3
7
作者 汪昌勇 《体育与科学》 CSSCI 北大核心 1993年第6期40-41,共2页
1 前言 随着当今世界剑坛的迅猛发展,击剑选手的技战术水平也越来越高,一般很难在一、二个回合里分出胜负来,这就要求运动员在场上要有良好的心理素质,在全面的基本技术前提下冷静、灵敏、机智地分析场上战术变化,根据不同对手的不同情... 1 前言 随着当今世界剑坛的迅猛发展,击剑选手的技战术水平也越来越高,一般很难在一、二个回合里分出胜负来,这就要求运动员在场上要有良好的心理素质,在全面的基本技术前提下冷静、灵敏、机智地分析场上战术变化,根据不同对手的不同情况,临场迅速地制定一套有一定应变能力。 展开更多
关键词 击剑运动 运动员 意图战术
下载PDF
基于双图注意力的多领域口语语言理解联合模型
8
作者 贾旭 彭敏 《中文信息学报》 CSCD 北大核心 2023年第10期76-85,共10页
多领域口语语言理解包括多意图识别和槽填充两个子任务,现有研究通过构建语句中的意图和槽之间的关联提升模型的表现。然而现有研究将多领域场景下的意图和槽看作相互独立的标签,忽视了标签之间领域内和领域间的结构关联。该文提出细粒... 多领域口语语言理解包括多意图识别和槽填充两个子任务,现有研究通过构建语句中的意图和槽之间的关联提升模型的表现。然而现有研究将多领域场景下的意图和槽看作相互独立的标签,忽视了标签之间领域内和领域间的结构关联。该文提出细粒度标签图和领域相关图的双图注意力联合模型。具体来说,细粒度标签图将意图和槽标签分成细粒度分片,建模分片之间的结构性关联和上下文表示的语义特征。领域相关图通过标签间的领域信息,建模预测意图和对应领域内槽的关联,减少图中的冗余关联。实验结果表明,在两个公开的数据集上,该文提出的模型均优于基准模型。 展开更多
关键词 领域口语语言理解 意图识别 细粒度标签图 领域相关图
下载PDF
改进GL-GIN的多意图识别和槽填充联合模型
9
作者 邓飞燕 陈壹华 +1 位作者 陈禧琳 李杰鸿 《计算机系统应用》 2023年第7期75-83,共9页
在当前自然语言处理多意图识别模型研究中,存在建模方式均为从意图到插槽的单一方向的信息流建模,忽视了插槽到意图的信息流交互建模研究,意图识别任务易于混淆且错误捕获其他意图信息,上下文语义特征提取质量不佳,有待进一步提升等问题... 在当前自然语言处理多意图识别模型研究中,存在建模方式均为从意图到插槽的单一方向的信息流建模,忽视了插槽到意图的信息流交互建模研究,意图识别任务易于混淆且错误捕获其他意图信息,上下文语义特征提取质量不佳,有待进一步提升等问题.本文以当前先进的典型代表GL-GIN模型为基础,进行优化改进,探索了插槽到意图的交互建模方法,运用槽到意图的单向注意力层,计算插槽到意图的注意力得分,纳入注意力机制,利用插槽到意图的注意力得分作为连接权重,使其可以传播和聚集与意图相关的插槽信息,使意图重点关注与其相关的插槽信息,从而实现多意图识别模型的双向信息流动;同时,引入BERT模型作为编码层,以提升了语义特征提取质量.实验表明,该交互建模方法效果提升明显,与原GL-GIN模型相比,在两个公共数据集(MixATIS和MixSNIPS)上,新模型的总准确率分别提高了5.2%和9%. 展开更多
关键词 GL-GIN 意图识别 插槽填充 联合模型
下载PDF
融合意图信息的小样本多意图识别
10
作者 罗顺茺 何军 《中文信息学报》 CSCD 北大核心 2023年第7期61-70,共10页
为解决匮乏资源下多意图识别语义、语境信息易受到不相关意图信息干扰的问题,该文提出一种基于原型网络在语义上嵌入意图信息的多意图识别方法。首先设计意图融合特征提取机制,通过结合话语和意图信息构建具有区分度的支持集、查询句和... 为解决匮乏资源下多意图识别语义、语境信息易受到不相关意图信息干扰的问题,该文提出一种基于原型网络在语义上嵌入意图信息的多意图识别方法。首先设计意图融合特征提取机制,通过结合话语和意图信息构建具有区分度的支持集、查询句和意图集表征,缓解短话语往往遭遇意图相关信息的语义混淆的问题;其次设计原型意图分离机制,计算所属意图话语对该意图原型的权重信息,联合意图权重得到分离式意图原型表征,降低支持集和查询句中不相关意图带来的噪声。实现了在低资源多意图场景下捕获高质量的原型表征。实验结果表明,该方法可有效提高小样本多意图识别的效果。 展开更多
关键词 意图识别 小样本学习 语义混淆 低资源 原型网络
下载PDF
基于全局图和多粒度意图单元的会话推荐
11
作者 李婉桦 孙英娟 +1 位作者 刘艺璇 刘乾 《计算机工程》 CAS CSCD 北大核心 2023年第10期136-144,153,共10页
现有基于图神经网络的会话推荐模型通过捕获项目复杂转换模式挖掘项目之间的潜在信息,但极少考虑跨会话信息及当前会话中的高层次信息,因此无法捕捉会话中复杂的依赖关系。针对该问题,建立基于全局图和多粒度意图单元的会话推荐模型。... 现有基于图神经网络的会话推荐模型通过捕获项目复杂转换模式挖掘项目之间的潜在信息,但极少考虑跨会话信息及当前会话中的高层次信息,因此无法捕捉会话中复杂的依赖关系。针对该问题,建立基于全局图和多粒度意图单元的会话推荐模型。构造跨会话图,利用图注意力网络得到跨会话表示。在连续意图单元上,构建多粒度意图单元异构会话图,得到全局和局部表示。将跨会话、全局和局部表示进行融合,捕捉会话中项目之间的复杂依赖关系。在意图融合排序模块中,分析会话重复点击和探索行为,并聚合所有级别的意图单元进一步提高模型推荐性能。在Diginetica和Tmall数据集上的实验结果表明,所提模型在平均倒数排名和精确度指标上相比于最优基线模型提高了2.12%和1.27%,具有较好的推荐性能。 展开更多
关键词 推荐系统 会话推荐 图神经网络 全局图 粒度意图单元
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部