期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
考虑温度模糊化的多层长短时记忆神经网络短期负荷预测
被引量:
27
1
作者
郑瑞骁
张姝
+1 位作者
肖先勇
汪颖
《电力自动化设备》
EI
CSCD
北大核心
2020年第10期181-186,共6页
智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平...
智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平均温度进行模糊化处理,减小夏季温度波动性对负荷预测的影响;建立含3层隐藏层的长短时记忆神经网络(LSTM)预测网络,并利用适应性矩估计(Adam)优化算法提高LSTM梯度参数的自适应性学习能力。利用西南某地区2018年6月至8月的实测温度和负荷数据进行验证,负荷预测结果表明,ML-LSTM模型比BP神经网络和支持向量机的负荷预测精度更高,且温度的模糊化处理提高了模型的泛化性。
展开更多
关键词
短期负荷预测
多层
长
短时记忆
神经网络
温度模糊化
Adam算法
下载PDF
职称材料
题名
考虑温度模糊化的多层长短时记忆神经网络短期负荷预测
被引量:
27
1
作者
郑瑞骁
张姝
肖先勇
汪颖
机构
四川大学电气工程学院
出处
《电力自动化设备》
EI
CSCD
北大核心
2020年第10期181-186,共6页
基金
四川大学专职博士后研发基金资助项目(2019SCU12003)。
文摘
智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平均温度进行模糊化处理,减小夏季温度波动性对负荷预测的影响;建立含3层隐藏层的长短时记忆神经网络(LSTM)预测网络,并利用适应性矩估计(Adam)优化算法提高LSTM梯度参数的自适应性学习能力。利用西南某地区2018年6月至8月的实测温度和负荷数据进行验证,负荷预测结果表明,ML-LSTM模型比BP神经网络和支持向量机的负荷预测精度更高,且温度的模糊化处理提高了模型的泛化性。
关键词
短期负荷预测
多层
长
短时记忆
神经网络
温度模糊化
Adam算法
Keywords
short-term load forecasting
ML-LSTM
temperature fuzziness
Adam algorithm
分类号
TM715 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
考虑温度模糊化的多层长短时记忆神经网络短期负荷预测
郑瑞骁
张姝
肖先勇
汪颖
《电力自动化设备》
EI
CSCD
北大核心
2020
27
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部