针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化...针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化和PReLU激活函数提高校正效果,最后使用全局跳跃连接得到最终的校正结果。通过对模拟红外图像序列和真实红外图像序列校正的实验结果表明,相对于目前已有的非均匀性校正算法,该方法在PSNR(Peak Signal to Noise Ratio)和粗糙度的客观数据上都有所提升,主观视觉效果也更加清晰,细节保留程度高。展开更多
为了克服传统的U-Net网络高分辨率遥感影像建筑物提取可能出现的漏检,以及边缘细节损失的问题,以U-Net网络作为基础模型,提出一种多尺度采样模块(residuals elan block)以及多分支组合下采样模块结合的语义分割算法。通过重新设计网络...为了克服传统的U-Net网络高分辨率遥感影像建筑物提取可能出现的漏检,以及边缘细节损失的问题,以U-Net网络作为基础模型,提出一种多尺度采样模块(residuals elan block)以及多分支组合下采样模块结合的语义分割算法。通过重新设计网络模型的编码器,使网络编码获取更多语义信息;通过采用卷积与池化结合的方法改善池化带来的空间信息丢失问题。在WHU Building Dataset公开数据集上的实验结果表明,该算法的精准度为85.01%,交并比为80.88%,比基础模型算法分别提高了4.73%和10.6%。展开更多
文摘针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化和PReLU激活函数提高校正效果,最后使用全局跳跃连接得到最终的校正结果。通过对模拟红外图像序列和真实红外图像序列校正的实验结果表明,相对于目前已有的非均匀性校正算法,该方法在PSNR(Peak Signal to Noise Ratio)和粗糙度的客观数据上都有所提升,主观视觉效果也更加清晰,细节保留程度高。
文摘为了克服传统的U-Net网络高分辨率遥感影像建筑物提取可能出现的漏检,以及边缘细节损失的问题,以U-Net网络作为基础模型,提出一种多尺度采样模块(residuals elan block)以及多分支组合下采样模块结合的语义分割算法。通过重新设计网络模型的编码器,使网络编码获取更多语义信息;通过采用卷积与池化结合的方法改善池化带来的空间信息丢失问题。在WHU Building Dataset公开数据集上的实验结果表明,该算法的精准度为85.01%,交并比为80.88%,比基础模型算法分别提高了4.73%和10.6%。