船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv...船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv4改进方法。该方法主要通过多层信息交互融合(multi-layer information interactive fusion,MLIF)模块和多注意感受野(multi-attention receptive field,MARF)模块构建一个双向细粒度特征金字塔。其中,MLIF模块用于融合不同尺度的特征,不仅能将深层的高级语义特征串联在一起,而且将较浅层的丰富特征进行重塑;MARF由感受野模块(receptive field block,RFB)与注意力机制模块组成,能有效地强调重要特征并抑制冗余特征。此外,为了进一步评估提出方法的性能,在新加坡海事数据集(Singapore maritime dataset,SMD)上进行了实验。实验结果表明,所提方法能有效地解决复杂海洋环境下多尺度船舶检测的难题,且同时满足了实时需求。展开更多
文摘船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv4改进方法。该方法主要通过多层信息交互融合(multi-layer information interactive fusion,MLIF)模块和多注意感受野(multi-attention receptive field,MARF)模块构建一个双向细粒度特征金字塔。其中,MLIF模块用于融合不同尺度的特征,不仅能将深层的高级语义特征串联在一起,而且将较浅层的丰富特征进行重塑;MARF由感受野模块(receptive field block,RFB)与注意力机制模块组成,能有效地强调重要特征并抑制冗余特征。此外,为了进一步评估提出方法的性能,在新加坡海事数据集(Singapore maritime dataset,SMD)上进行了实验。实验结果表明,所提方法能有效地解决复杂海洋环境下多尺度船舶检测的难题,且同时满足了实时需求。