期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多尺度特征复用混合注意力网络的图像重建 被引量:4
1
作者 卢正浩 刘丛 《中国图象图形学报》 CSCD 北大核心 2021年第11期2645-2658,共14页
目的针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法网络主要由预处理模块、多尺度特征复用混合注意... 目的针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.9273,30.35 dB/0.8427,29.11 dB/0.8052和28.23 dB/0.8540,相比其他模型有一定提升。结论量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。 展开更多
关键词 超分辨率重建 尺度特征复用 混合注意力 特征补偿 边缘
原文传递
一种基于多尺度特征复用残差网络的矿山图像重建算法
2
作者 马琳 苏明 兰义湧 《金属矿山》 CAS 北大核心 2023年第11期228-233,共6页
针对矿山图像重建中细节损失导致重建质量低下的问题,提出了一种基于多尺度特征复用残差网络的矿山图像重建算法,旨在提高矿山场景下图像重建的精度和效率。首先,设计了一个多尺度特征提取模块,通过堆叠多个并行的卷积层和池化层,结合... 针对矿山图像重建中细节损失导致重建质量低下的问题,提出了一种基于多尺度特征复用残差网络的矿山图像重建算法,旨在提高矿山场景下图像重建的精度和效率。首先,设计了一个多尺度特征提取模块,通过堆叠多个并行的卷积层和池化层,结合局部残差网络构建图像特征提取模块,通过不同尺度的多路组合网络,从输入图像中充分提取图像的多尺度细节特征。这些特征表示具有不同的语义信息和空间分辨率,能够捕捉到图像中的不同细节和纹理结构。然后,引入了特征复用模块,将不同尺度的特征进行融合和复用,以增强图像重建的准确性。通过多尺度的特征交互和信息传递,可以有效地利用全局和局部的上下文信息,提高图像的重建性能。通过在自建的矿山图像重建数据集上进行试验,结果表明:所提出的算法在重建精度和效率方面均得到了显著提升,与其他深度学习模型相比,该算法在重建图像的细节保留和结构准确性方面表现出更好的性能。此外,该算法具有较快的训练和推断速度,适用于实际应用场景。 展开更多
关键词 矿山图像重建 尺度特征复用 残差网络 图像质量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部