期刊文献+
共找到214篇文章
< 1 2 11 >
每页显示 20 50 100
多尺度加权LBP的人脸识别 被引量:7
1
作者 王成 郭飞 +1 位作者 赖雄鸣 郑黎晓 《光电工程》 CAS CSCD 北大核心 2014年第4期82-88,共7页
针对传统局部二值模型(LBP)算子容易受到周围噪声点的干扰的缺点,提出了首先对图像进行Gauss滤波预处理,去除图像中的干扰噪声。针对传统LBP算子无法提取出非局部特征信息,提出一种新的基于多尺度加权的改进LBP(MWLBP)算子。MWLBP算子... 针对传统局部二值模型(LBP)算子容易受到周围噪声点的干扰的缺点,提出了首先对图像进行Gauss滤波预处理,去除图像中的干扰噪声。针对传统LBP算子无法提取出非局部特征信息,提出一种新的基于多尺度加权的改进LBP(MWLBP)算子。MWLBP算子以不同大小的方型邻域为研究对象,将不同大小区域的LBP直方图进行加权求和。MWLBP比传统LBP算子提取的特征范围更大,在提取了局部特征的同时,保留了一定的非局部特征。相对于Gabor和其它特征提取方法,MWLBP算子在保留了多尺度特征的同时,能控制计算量大小。在ORL和Yale人脸数据库上的实验表明,Gauss滤波预处理确实能去除图像中的干扰噪声,提高识别准确率;MWLBP算子比传统的LBP算子、Gabor和其它特征提取方法减少了计算量,加快了分类器训练和人脸识别的速度,提高了准确率。 展开更多
关键词 人脸识别 局部二值模式 Gauss滤波预处理 尺度加权 空间区域直方图 GABOR
下载PDF
高斯自适应多尺度加权滤波去雾算法 被引量:1
2
作者 杨洋 宋春花 《计算机应用与软件》 北大核心 2022年第3期187-192,265,共7页
为了达到良好的图像去雾效果,提出一种高斯自适应多尺度加权滤波去雾算法。通过多尺度最小值加权滤波得到暗通道图像,建立最小通道与高斯函数的关系,线性约束后并经过自适应参数对像素灰度值的调整得到粗级透射率,紧接着对得到的粗级透... 为了达到良好的图像去雾效果,提出一种高斯自适应多尺度加权滤波去雾算法。通过多尺度最小值加权滤波得到暗通道图像,建立最小通道与高斯函数的关系,线性约束后并经过自适应参数对像素灰度值的调整得到粗级透射率,紧接着对得到的粗级透射率图像进行多尺度加权引导滤波得到优化透射率,结合加权大气光强并依据大气散射模型对图像进行去雾复原处理。实验结果表明,该方法有效地将单幅有雾图像进行了处理,与其他经典算法相比较得到的图像细节显示效果好,很好地恢复了场景的对比度,增加了图像的可见度,具备一定的优异性。 展开更多
关键词 图像去雾 尺度加权 高斯函数 自适应标准差
下载PDF
基于多尺度加权的大数据信息统计及智能化安全监测方法
3
作者 吴秦鹏 《长江信息通信》 2023年第10期67-69,共3页
针对当前大数据信息统计损失值较大,安全监测误差值较大,严重影响电力安全生产的问题,引入多尺度加权,对大数据信息统计及智能化安全监测方法进行研究。通过物联网在企业的业务系统中获取所需信息,进行预处理;构建在稳态工况条件下和动... 针对当前大数据信息统计损失值较大,安全监测误差值较大,严重影响电力安全生产的问题,引入多尺度加权,对大数据信息统计及智能化安全监测方法进行研究。通过物联网在企业的业务系统中获取所需信息,进行预处理;构建在稳态工况条件下和动态工况条件下的大数据基准模型;结合多尺度加权,实现异步信息融合与统计;对融合残差多尺度分析,实现智能化安全监测。通过对比实验证明,新的方法能够在大数据新系统及时降低损失值,并提高安全监测的精度,减小监测误差,为电力安全生产提供有力支撑。 展开更多
关键词 尺度加权 信息 安全监测 智能化 统计 大数据
下载PDF
广义复合多尺度加权排列熵与参数优化支持向量机的滚动轴承故障诊断 被引量:25
4
作者 丁嘉鑫 王振亚 +1 位作者 姚立纲 蔡永武 《中国机械工程》 EI CAS CSCD 北大核心 2021年第2期147-155,共9页
针对滚动轴承特征提取和故障识别两个关键环节,提出了一种广义复合多尺度加权排列熵(GCMWPE)与参数优化支持向量机相结合的故障诊断方法。利用GCMWPE全面表征滚动轴承故障特征信息,构建高维故障特征集。应用监督等度规映射(S-Isomap)算... 针对滚动轴承特征提取和故障识别两个关键环节,提出了一种广义复合多尺度加权排列熵(GCMWPE)与参数优化支持向量机相结合的故障诊断方法。利用GCMWPE全面表征滚动轴承故障特征信息,构建高维故障特征集。应用监督等度规映射(S-Isomap)算法进行有效的二次特征提取。采用天牛须搜索优化支持向量机(BAS-SVM)诊断识别故障类型。将所提方法应用于滚动轴承实验数据分析过程,结果表明:GCMWPE特征提取效果优于多尺度加权排列熵、复合多尺度加权排列熵和广义多尺度加权排列熵;GCMWPE与S-Isomap相结合的特征提取方法可在低维空间中有效区分滚动轴承不同故障类型;BAS-SVM的识别正确率和识别速度优于粒子群优化支持向量机、模拟退火优化支持向量机和人工鱼群优化支持向量机;所提方法能够有效、精准地识别出各故障类型。 展开更多
关键词 广义复合尺度加权排列熵 支持向量机 等度规映射 滚动轴承 故障诊断
下载PDF
基于熵-流特征和樽海鞘群优化支持向量机的故障诊断方法 被引量:23
5
作者 王振亚 姚立纲 +1 位作者 蔡永武 张俊 《振动与冲击》 EI CSCD 北大核心 2021年第6期107-114,共8页
针对旋转机械设备故障特征提取困难的问题,提出一种熵-流特征和樽海鞘群优化支持向量机(salp swarm optimization support vector machine,SSO-SVM)的故障诊断方法。利用改进多尺度加权排列熵(improved multiscale weighted permutation... 针对旋转机械设备故障特征提取困难的问题,提出一种熵-流特征和樽海鞘群优化支持向量机(salp swarm optimization support vector machine,SSO-SVM)的故障诊断方法。利用改进多尺度加权排列熵(improved multiscale weighted permutation entropy,IMWPE)提取机械设备不同工况下的故障特征;采用监督等度规映射(S-Isomap)流形学习进行降维处理,获取低维的熵-流特征集;将熵-流特征输入至SSO-SVM多故障分类器进行识别与诊断。行星齿轮箱故障诊断实验分析结果表明:IMWPE+S-Isomap熵-流特征提取方法优于现有的多尺度排列熵(multiscale permutation entropy,MPE)、多尺度加权排列熵(multiscale weighted permutation entropy,MWPE)和IMWPE等熵值特征提取方法以及IMWPE+等度规映射(Isomap)和IMWPE+线性局部切空间排列(linear local tangent space alignment,LLTSA)等熵-流特征提取方法;樽海鞘群算法对支持向量机参数寻优效果优于粒子群、灰狼群、人工蜂群和蝙蝠群等算法;所提故障诊断方法识别精度达到100%,能够有效诊断出行星齿轮箱各工况类型。 展开更多
关键词 故障诊断 行星齿轮箱 熵-流特征 改进尺度加权排列熵(IMWPE) 等度规映射(Isomap) 樽海鞘群优化算法(SSO) 支持向量机(SVM)
下载PDF
改进的多级移动曲面拟合激光雷达数据滤波方法 被引量:16
6
作者 孙崇利 苏伟 +6 位作者 武红敢 刘睿 刘婷 黄健熙 朱德海 张晓东 刘峻明 《红外与激光工程》 EI CSCD 北大核心 2013年第2期349-354,共6页
激光雷达数据滤波是为了获取高精度数字高程模型而改进的多级移动曲面拟合滤波方法。预处理剔除了粗差点和大部分建筑物侧面回波点,再通过格网化分,建立数据索引,相邻曲面保持一定的重叠度,利用最小二乘法求解拟合曲面参数,自动设置阈... 激光雷达数据滤波是为了获取高精度数字高程模型而改进的多级移动曲面拟合滤波方法。预处理剔除了粗差点和大部分建筑物侧面回波点,再通过格网化分,建立数据索引,相邻曲面保持一定的重叠度,利用最小二乘法求解拟合曲面参数,自动设置阈值后进行滤波。最后,利用多尺度加权插值方法生成数字高程模型。采用国际摄影测量与遥感学会(ISPRS)提供的测试数据进行实验。结果表明:改进的算法降低了三类误差产生的可能,第一实验区的总误差由8.39%降低到7.40%,第二实验区的总误差由6.39%降低到5.86%,生成的数字高程模型满足精度要求,具有推广性。 展开更多
关键词 激光雷达 数据滤波 自适应阈值 尺度加权插值
下载PDF
基于VMD与GWO优化SVM的轴承故障诊断 被引量:9
7
作者 郑佳昕 杨灿 +1 位作者 郎永存 李积元 《煤矿机械》 2021年第1期147-150,共4页
针对传统振动信号特征提取方法与支持向量机(SVM)分类方法的缺陷,提出一种基于变分模态分解(VMD)故障特征提取方法与灰狼优化器(GWO)优化SVM的诊断模型。首先,将滚动轴承的原始振动信号采用VMD得到若干本征模态分量(IMF);其次,将IMF的... 针对传统振动信号特征提取方法与支持向量机(SVM)分类方法的缺陷,提出一种基于变分模态分解(VMD)故障特征提取方法与灰狼优化器(GWO)优化SVM的诊断模型。首先,将滚动轴承的原始振动信号采用VMD得到若干本征模态分量(IMF);其次,将IMF的多尺度加权排列熵作为特征向量并使用t-sne方法做降维处理;最后,使用GWO对SVM进行优化并对样本数据进行分类判别。实验结果表明,该方法相比于其他传统算法能够有效提高故障分类精度。 展开更多
关键词 VMD 尺度加权排列熵 GWO SVM 故障诊断
下载PDF
基于多尺度加权排列熵的管道泄漏检测 被引量:8
8
作者 陈柯宇 高金凤 吴平 《测控技术》 2019年第2期118-122,132,共6页
管道的泄漏检测对于物料长距离运输的安全至关重要。利用加权排列熵方法分析管道的压力时间序列,可提取压力时间序列的特征,通过判定所提取特征的变化,实现管道的泄漏检测。考虑到单尺度加权排列熵在反映压力信号复杂度方面的不足,提出... 管道的泄漏检测对于物料长距离运输的安全至关重要。利用加权排列熵方法分析管道的压力时间序列,可提取压力时间序列的特征,通过判定所提取特征的变化,实现管道的泄漏检测。考虑到单尺度加权排列熵在反映压力信号复杂度方面的不足,提出了基于多尺度加权排列熵的管道泄漏检测方法。该方法采取移动窗口法,选取固定长度的压力序列作为子序列。计算该子序列的多尺度加权排列熵,从而判定管道的泄漏。最后,通过对管道泄漏实验装置的仿真试验,验证了所提算法的有效性。 展开更多
关键词 时间序列 加权排列熵 尺度加权排列熵 管道泄漏检测
下载PDF
一种并行混合注意力的渐进融合图像增强方法 被引量:7
9
作者 刘光辉 杨琦 +2 位作者 孟月波 赵敏华 杨华 《光电工程》 CAS CSCD 北大核心 2023年第4期47-59,共13页
针对低照度图像增强过程中出现的色彩失真、噪声放大和细节信息丢失等问题,提出一种并行混合注意力的渐进融合图像增强方法 (progressive fusion of parallel hybrid attention,PFA)。首先,设计多尺度加权聚合网络(multiscale weighted ... 针对低照度图像增强过程中出现的色彩失真、噪声放大和细节信息丢失等问题,提出一种并行混合注意力的渐进融合图像增强方法 (progressive fusion of parallel hybrid attention,PFA)。首先,设计多尺度加权聚合网络(multiscale weighted aggregation,MWA),通过聚合不同感受野下学习到的多尺度特征,促进局部特征的全域化表征,加强原始图像细节信息的保留;其次,提出并行混合注意力结构(parallel hybrid attention module,PHA),利用像素注意力和通道注意力并联组合排列,缓解不同分支注意力分布滞后造成的颜色差异,通过相邻注意力间的信息相互补充有效提高图像的色彩表现力并弱化噪声;最后,设计渐进特征融合模块(progressive feature fusion module,PFM),在三个阶段由粗及细对前阶段输入特征进行再处理,补充因网络深度增加造成的浅层特征流失,避免因单阶段特征堆叠导致的信息冗余。LOL、DICM、MEF和LIME数据集上的实验结果表明,本文方法在多个评价指标上的表现均优于对比方法。 展开更多
关键词 图像增强 尺度加权聚合 并行混合注意力 渐进融合 信息冗余
下载PDF
基于谱熵梅尔积和改进VMD的轴承故障预警 被引量:8
10
作者 马小平 李博华 +2 位作者 蔡蔓利 韩正化 陈泽彭 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第11期1179-1187,共9页
针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点... 针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点效应对提取效果造成的影响,提出能量差网格搜索法对VMD进行参数寻优,并用支持向量回归机对端点效应进行抑制,结合多尺度加权排列熵在检测振动信号随机性方面的优势,充分发挥VMD对信号的重构能力,对起始点后的故障段进行特征捕捉.通过实际轴承故障信号的实验及数据分析,验证了该方法在轴承故障预警中的有效性. 展开更多
关键词 谱熵梅尔积 改进变分模态分解 尺度加权排列熵 轴承故障诊断
下载PDF
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:2
11
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 DETR EfficientNet 3-D注意力机制 尺度加权特征融合
下载PDF
城市轨道交通车站客流特征影响程度分析 被引量:5
12
作者 马壮林 杨兴 +1 位作者 胡大伟 谭晓伟 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期1428-1439,共12页
城市轨道交通车站客流特征与其周边建成环境和社会经济因素密切相关,且不同影响因素对客流特征的影响也存在时间和空间异质性。以车站工作日日均客流量、工作日特殊时段(如早高峰进站、早高峰出站、晚高峰进站和晚高峰出站)客流量为因变... 城市轨道交通车站客流特征与其周边建成环境和社会经济因素密切相关,且不同影响因素对客流特征的影响也存在时间和空间异质性。以车站工作日日均客流量、工作日特殊时段(如早高峰进站、早高峰出站、晚高峰进站和晚高峰出站)客流量为因变量,从车站属性、连接性和建成环境3个方面选择23个自变量,采用多尺度地理加权回归(MGWR)模型构建客流特征分析模型,分析不同时间尺度下轨道交通车站客流量的影响因素及其相互作用,并以南京市轨道交通系统进行实例分析。结果表明:与普通最小二乘法(OLS)回归模型和地理加权回归(GWR)模型相比,MGWR模型更为可靠;忽略早晚高峰客流影响的全天客流量预测模型拥有的显著自变量最多,到市中心的距离对客流量有显著的负影响,证明距离市中心越近的车站的客流量集聚性越明显;周边居住、生活类设施占比较高的车站对早高峰进站和晚高峰出站客流有很强的吸引作用,而周边居住、生活类设施占比不高的车站对早高峰出站和晚高峰进站客流有很强的吸引作用。研究结果可以为城市规划部门促进城市轨道交通与城市建设的协同发展提供理论支撑。 展开更多
关键词 城市轨道交通 车站客流特征 尺度加权地理回归模型 影响程度
原文传递
基于改进的YOLOv5安全帽佩戴检测算法 被引量:1
13
作者 雷建云 李志兵 +1 位作者 夏梦 田望 《湖北大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构... 针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构,有效地提升图像浅层特征的提取及融合能力;在YOLOv5的Neck网络的BottleneckCSP结构中加入SENet模块,使模型更多地关注目标信息忽略背景信息;针对大分辨率的图像,添加图像切割层,避免多倍下采样造成的小目标特征信息大量丢失。对YOLOv5模型进行改进之后,通过自制的安全帽数据集进行训练检测,mAP和召回率分别达到97.06%、92.54%,与YOLOv5相比较分别提升了4.74%和4.31%。实验结果表明:改进的YOLOv5算法可有效提升安全帽佩戴的检测性能,能够准确识别施工人员的安全帽佩戴情况,从而大大降低施工现场的安全风险。 展开更多
关键词 目标检测 尺度加权特征融合 注意力机制 图像切割
下载PDF
融合多特征信息与GWO-SVM的机械关键设备故障诊断
14
作者 宋玲玲 王琳 +1 位作者 钟丽 李晨曦 《机械设计与制造》 北大核心 2024年第11期116-121,共6页
为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的... 为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的机械关键设备故障诊断模型。首先,提取机械关键设备故障信号的时域特征、频域特征和多尺度加权排列熵特征,分别对比不同特征的机械关键设备故障诊断结果。其次,为提高SVM模型性能,运用GWO算法对SVM模型的惩罚参数P和核函数参数g进行优化选择,提出一种融合多特征信息与GWO-SVM的机械设备故障诊断模型。与GA-SVM、PSO-SVM和SVM相比,基于GWO-SVM的机械设备故障诊断模型的诊断精度最高。这里算法可以有效提高机械关键设备故障诊断正确率,为机械关键设备故障诊断提供了新的方法。 展开更多
关键词 时域特征 灰狼优化算法 支持向量机 频域特征 尺度加权排列熵
下载PDF
基于WOA-VMD-SVM数控机床刀具健康状态评价体系的建立
15
作者 王寿元 李积元 郎永存 《制造业自动化》 2024年第1期154-160,共7页
刀具的健康状态直接影响着数控机床的加工性能。对刀具的磨损、破损等健康状态因素进行前期预测和判断,可有效防止因刀具健康状态异常而导致加工质量不稳定等问题。根据刀具在机加工过程中因磨损状况而引起机床机械特性的变化展开分析... 刀具的健康状态直接影响着数控机床的加工性能。对刀具的磨损、破损等健康状态因素进行前期预测和判断,可有效防止因刀具健康状态异常而导致加工质量不稳定等问题。根据刀具在机加工过程中因磨损状况而引起机床机械特性的变化展开分析与研究,即通过采集与刀具健康状态相关联的机床主轴振动信号,并对该信号进行处理和特征提取,建立基于WOA-VMD-SVM刀具健康状态预测识别模型。经实验分析与验证,所建立的模型具有很高的识别准确率,其准确率高达96.8%,高于SVM模型和GA-SVM模型,由此表明该模型能够高效、准确地对刀具磨损状态进行识别和分类。 展开更多
关键词 数控机床 刀具健康状态 变分模态分解 尺度加权排列熵 支持向量机
下载PDF
信息熵在滚动轴承故障诊断中的应用
16
作者 高峰 刘驰 +3 位作者 赵子航 徐雷 徐捷 牛晓敏 《新技术新工艺》 2024年第10期62-68,共7页
为了提高滚动轴承故障诊断的准确率,提出一种基于局部均值分解(LMD)、复合多尺度加权排列熵(CMWPE)和支持向量机(SVM)的滚动轴承故障诊断新方法。首先利用LMD方法实现滚动轴承振动信号的自适应时频分解,通过计算各分量与原始信号的相关... 为了提高滚动轴承故障诊断的准确率,提出一种基于局部均值分解(LMD)、复合多尺度加权排列熵(CMWPE)和支持向量机(SVM)的滚动轴承故障诊断新方法。首先利用LMD方法实现滚动轴承振动信号的自适应时频分解,通过计算各分量与原始信号的相关系数,选择相关性较高的分量进行信号重构达到降噪的目的;然后提出基于CMWPE的特征提取方法,从降噪信号中提取相应的特征参数,构造稳定性好且辨识度高的多尺度非线性动力学故障特征集合;最后将构造的高维特征集输入SVM以实现滚动轴承故障诊断。试验数据分析结果表明,该方法能够准确区分滚动轴承不同的故障类型,与其他诊断方法相比,提出方法的故障识别准确率更高。 展开更多
关键词 复合尺度加权排列熵 滚动轴承 故障诊断 试验验证
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
17
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
基于多尺度加权主成分分析的SF_6红外光谱分析 被引量:3
18
作者 彭玺 王先培 黄云光 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第6期1535-1540,共6页
利用红外光谱法分析SF6气体及其衍生物是判断气体绝缘组合电器(GIS)运行状态和故障的一种重要手段。传统的诊断方法过程繁琐、效率低下,而且受主观因素的影响较大。本文指出可以采用机器学习的方法实现GIS设备的故障诊断,并提出了多尺... 利用红外光谱法分析SF6气体及其衍生物是判断气体绝缘组合电器(GIS)运行状态和故障的一种重要手段。传统的诊断方法过程繁琐、效率低下,而且受主观因素的影响较大。本文指出可以采用机器学习的方法实现GIS设备的故障诊断,并提出了多尺度加权主成分分析的特征提取方法。多尺度加权主成分分析结合了主成分分析和多尺度分解的特点,保证了尺度特征信息的最大化,并且修正了特征向量在数据分类时的权重。通过对广西电力研究院提供的SF6及其衍生物的红外光谱进行分析,证明了多尺度加权主成分分析算法对训练样本的分类效果要比标准的主成分分析算法好3~4倍。 展开更多
关键词 红外光谱技术 六氟化硫 气体绝缘组合电器 尺度加权主成分分析
下载PDF
CMWPE结合SaE-ELM的轮对轴承故障诊断方法 被引量:2
19
作者 张龙 彭小明 +2 位作者 熊国良 吴荣真 胡俊锋 《机械科学与技术》 CSCD 北大核心 2023年第4期512-520,共9页
针对DF4型内燃机车轮对轴承不同故障状态的判别问题,提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, Sa... 针对DF4型内燃机车轮对轴承不同故障状态的判别问题,提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, SaE-ELM)的机车轮对轴承故障识别方法。CMWPE基于复合粗粒化和加权排列熵的思想,能很好地区分信号的不同模式。SaE-ELM通过自适应进化算法对极限学习机的输入权重、隐含层参数和输出权重进行优化,解决了ELM随机选取网络参数的局限性,提高了网络的泛化性能。计算机车轮对轴承不同健康状态下振动信号的CMWPE,利用SaE-ELM识别轴承所属故障类型及故障程度。在机务段的JL-501轴承检测台上采集了7种不同健康状态的轮对轴承试件的振动信号数据。结果表明:CMWPE特征提取效果优于MPE和MWPE;SaE-ELM模式识别效果优于参数不经优化的ELM。所提方法能够有效诊断机车轮对轴承的不同故障,且故障识别率达到100%。 展开更多
关键词 机车轮对轴承 故障诊断 特征提取 模式识别 复合尺度加权排列熵 自适应进化极限学习机
下载PDF
基于多尺度加权融合特征学习的转子故障诊断 被引量:1
20
作者 王展 鲁晨琪 +1 位作者 星施宇 王卿源 《组合机床与自动化加工技术》 北大核心 2023年第11期154-158,共5页
针对一维振动信号表达故障特征信息不全面及转子故障信噪比低的问题,提出一种基于多尺度加权融合特征学习的转子故障诊断方法。首先,对时域振动信号的幅值进行标准化处理,利用对称点模式(SDP)原理将多传感器振动信息融合为二维SDP图像,... 针对一维振动信号表达故障特征信息不全面及转子故障信噪比低的问题,提出一种基于多尺度加权融合特征学习的转子故障诊断方法。首先,对时域振动信号的幅值进行标准化处理,利用对称点模式(SDP)原理将多传感器振动信息融合为二维SDP图像,通过选取适当的时间滞后系数和角增益,突出不同故障下SDP图像的特征;其次,构建了一种多尺度加权卷积神经网络(MSW-CNN)模型,利用3个不同的感受野分别提取图像特征,通过对多通道图像特征进行加权融合提高了模型的分类精度;最后,利用MSW-CNN模型对6种故障状态的SDP图像进行特征提取并分类。实验结果表明,与其他3种方法相比,所提方法的转子故障诊断精度更高,达到99.31%,在噪声干扰下的诊断精度为96.23%,验证了所提方法的有效性。 展开更多
关键词 SDP图像 尺度加权融合 特征提取 转子系统 故障诊断
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部