期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度分类挖掘算法
1
作者 张璐璐 赵书良 +1 位作者 田真真 陈润资 《计算机应用研究》 CSCD 北大核心 2021年第2期414-420,共7页
多尺度分类挖掘多局限于空间数据,且对一般数据尺度特性进行分类的研究较少。针对上述问题,进行普适的多尺度分类方法研究,以扩大多尺度适用范围。从空间数据估计角度出发,结合层次理论和尺度特性,基于概率密度估计离散化方法,针对数据... 多尺度分类挖掘多局限于空间数据,且对一般数据尺度特性进行分类的研究较少。针对上述问题,进行普适的多尺度分类方法研究,以扩大多尺度适用范围。从空间数据估计角度出发,结合层次理论和尺度特性,基于概率密度估计离散化方法,针对数据的多尺度特性进行分类挖掘。以非局部均值和三次卷积插值为理论基础,利用Q统计和不一致度量进行操作,提出多尺度分类尺度上推算法和多尺度分类尺度下推算法。采用UCI数据集和H省人口真实数据集进行实验,并与CFW、MSCSUA和MSCSDA等算法进行对比,结果表明,该算法可行有效。与其他算法相比,尺度上推算法正确率平均提高4.5%,F-score提高4.8%,NMI提高12.3%,尺度下推算法各个相应指标分别平均提高5.3%,6.6%和11.8%。 展开更多
关键词 尺度 不一致度量 尺度转换 尺度分类挖掘 Q统计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部