针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中...针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中的过程状态数据,构建基于多尺度一维卷积及通道注意力模型(MS1DC-CA)的虚拟计量模型。通过多个尺度的卷积核提取不同尺度范围内的状态数据特征。在对含有缺失值的原始数据预处理中,提出了基于粒子群算法改进的K近邻填补方法(PSO-KNN Imputation)进行缺失值填充,保留特征的同时,减少因填充值引入的干扰。最后在实际生产采集的数据上进行实验对比分析,实际不良率主要集中在0.1%~0.5%,该虚拟计量模型的拟合均方误差为0.397 7‱,低于其他现有拟合模型,在平均绝对误差、对称平均绝对百分比误差和拟合优度3种评价指标下也均优于其他现有的拟合模型,具有良好的预测性能。展开更多
文摘针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中的过程状态数据,构建基于多尺度一维卷积及通道注意力模型(MS1DC-CA)的虚拟计量模型。通过多个尺度的卷积核提取不同尺度范围内的状态数据特征。在对含有缺失值的原始数据预处理中,提出了基于粒子群算法改进的K近邻填补方法(PSO-KNN Imputation)进行缺失值填充,保留特征的同时,减少因填充值引入的干扰。最后在实际生产采集的数据上进行实验对比分析,实际不良率主要集中在0.1%~0.5%,该虚拟计量模型的拟合均方误差为0.397 7‱,低于其他现有拟合模型,在平均绝对误差、对称平均绝对百分比误差和拟合优度3种评价指标下也均优于其他现有的拟合模型,具有良好的预测性能。