The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burge...The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.展开更多
The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-le...The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.展开更多
By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coeffici...By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.展开更多
文摘The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.
文摘The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.
文摘By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.