期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度核自适应滤波的股票收益预测
1
作者 汤兴恒 郭强 +1 位作者 徐天慧 张彩明 《计算机应用》 CSCD 北大核心 2023年第5期1385-1393,共9页
在股票市场中,投资者可通过捕捉历史数据中潜在的交易模式实现对股票未来收益的预测,股票收益预测问题的关键在于如何准确地捕捉交易模式,但受公司业绩、金融政策以及国家经济增长等不确定性因素的影响,交易模式往往难以捕捉。针对该问... 在股票市场中,投资者可通过捕捉历史数据中潜在的交易模式实现对股票未来收益的预测,股票收益预测问题的关键在于如何准确地捕捉交易模式,但受公司业绩、金融政策以及国家经济增长等不确定性因素的影响,交易模式往往难以捕捉。针对该问题,提出一种多尺度核自适应滤波(MSKAF)方法,从过去的市场数据中捕捉多尺度交易模式。为刻画股票的多尺度特征,该方法采用平稳小波变换(SWT)得到不同尺度的数据分量,不同尺度的数据分量蕴含着股票价格波动背后潜在的不同交易模式,然后采用核自适应滤波(KAF)方法捕捉不同尺度的交易模式,以预测股票未来收益。实验结果表明,相较于基于两阶段核自适应滤波(TSKAF)的预测模型,所提方法的预测结果的平均绝对误差(MAE)减小了10%,夏普比率增加了8.79%,可见所提方法实现了更好的股票收益预测性能。 展开更多
关键词 股票收益预测 核自适应滤波 交易模式 多元数据依赖 序列学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部