期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
深度复数轴向自注意力卷积循环网络的语音增强 被引量:1
1
作者 曹洁 王乔 +3 位作者 梁浩鹏 王宸章 李晓旭 于泓 《计算机系统应用》 2024年第4期60-68,共9页
单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域... 单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域同时实现了语音幅度信息和相位信息的增强.首先使用基于复数卷积网络的编码器从输入语音信号中提取复数表示的特征,并引入卷积跳连模块用以将特征映射到高维空间进行特征融合,加强信息间的交互和梯度的流动.然后设计了基于轴向自注意力机制的编码器-解码器结构,利用轴向自注意力机制来增强模型的时序建模能力和特征提取能力.最后通过解码器实现对语音信号的重构,同时利用混合损失函数优化网络模型,提升增强语音信号的质量.实验在公开数据集Valentini和DNS Challenge上进行,结果表明所提方法相对于其他模型在客观语音质量评估(perceptual evaluation of speech quality,PESQ)和短时客观可懂度(short-time objective intelligibility,STOI)两项指标上均有提升,在非混响数据集中,PESQ比DCTCRN(deep cosine transform convolutional recurrent network)提高了12.8%,比DCCRN(deep complex convolutional recurrent network)提高了3.9%,验证了该网络模型在语音增强任务中的有效性. 展开更多
关键词 单通道语音增强 复数卷积循环网络 卷积跳连 轴向自注意力机制
下载PDF
基于注意力机制和复数卷积循环网络的汽车雷达干扰抑制
2
作者 吴秋雨 高勇 《无线电工程》 2024年第1期63-70,共8页
随着自动驾驶技术的发展,越来越多的汽车装载车载雷达,不同车辆的车载雷达之间会产生相互干扰,导致虚假目标的出现或基底噪声的增加,降低检测性能。针对汽车雷达之间的相互干扰问题,提出了一种基于注意力机制的深度复数卷积循环网络(Dee... 随着自动驾驶技术的发展,越来越多的汽车装载车载雷达,不同车辆的车载雷达之间会产生相互干扰,导致虚假目标的出现或基底噪声的增加,降低检测性能。针对汽车雷达之间的相互干扰问题,提出了一种基于注意力机制的深度复数卷积循环网络(Deep Complex Convolution Recurrent Network with Attention,DCCRN-Attention),在频域实现干扰抑制。模型使用复数网络将信号的实部和虚部联合起来进行特征学习,能同时预测干扰抑制后目标的幅度和相位,并在跳跃连接中引入注意力机制聚焦于更重要的特征信息,抑制无关信息。实验结果表明,所提模型能有效抑制干扰、提高目标的信噪比(Signal to Noise Ratio,SNR),在评价指标上均优于基线方法。 展开更多
关键词 汽车雷达 干扰抑制 深度复数卷积循环网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部