设K是实Banach空间E的非空闭凸集,{Ti}iN=1:K→K是N个严格伪压缩映象且公共不动集F=∩Ni=1F(Ti)≠φ,其中F(Ti)={x∈K:Tix=x}.{αn}n∞=1,{βn}n∞=1[0,1]是实序列且满足条件:(i)sum from n=1 to ∞ (αn)(ii)lim(n→∞)αn=lim(n→∞...设K是实Banach空间E的非空闭凸集,{Ti}iN=1:K→K是N个严格伪压缩映象且公共不动集F=∩Ni=1F(Ti)≠φ,其中F(Ti)={x∈K:Tix=x}.{αn}n∞=1,{βn}n∞=1[0,1]是实序列且满足条件:(i)sum from n=1 to ∞ (αn)(ii)lim(n→∞)αn=lim(n→∞)βn=0(iii)αnβnL2<1,n≥1其中L≥1是{Ti}iN=1的公共Lipschitz常数.对于任意的x0∈K,设{xn}n∞=1是由下列产生的复合隐格式迭代序列:xn=(1-αn)xn-1+αn Tnynyn=(1-βn)xn-1+βnTnxn其中Tn=Tn mod N,则{xn}强收敛到{Ti}iN=1的公共不动点.结果推广和改进了相关文献的结果,且主要定理的证明方法也是不同的.并且进一步给出了序列的收敛率估计.展开更多
文摘设K是实Banach空间E的非空闭凸集,{Ti}iN=1:K→K是N个严格伪压缩映象且公共不动集F=∩Ni=1F(Ti)≠φ,其中F(Ti)={x∈K:Tix=x}.{αn}n∞=1,{βn}n∞=1[0,1]是实序列且满足条件:(i)sum from n=1 to ∞ (αn)(ii)lim(n→∞)αn=lim(n→∞)βn=0(iii)αnβnL2<1,n≥1其中L≥1是{Ti}iN=1的公共Lipschitz常数.对于任意的x0∈K,设{xn}n∞=1是由下列产生的复合隐格式迭代序列:xn=(1-αn)xn-1+αn Tnynyn=(1-βn)xn-1+βnTnxn其中Tn=Tn mod N,则{xn}强收敛到{Ti}iN=1的公共不动点.结果推广和改进了相关文献的结果,且主要定理的证明方法也是不同的.并且进一步给出了序列的收敛率估计.