期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究 被引量:12
1
作者 王宏伟 孙文磊 +1 位作者 张小栋 何丽 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期288-295,共8页
以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。... 以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。首先将时域信号转换至角域;然后通过AGWO-VMD方法对角域信号进行自适应分解,并采用NCMDE算法提取分解后及原始信号中的故障特征构成特征向量;最后利用LSTM模型对特征向量进行智能识别与分类。对实际采集的6种故障齿轮信号进行测试与验证,试验结果表明该方法能快速有效区分齿轮故障类型。 展开更多
关键词 风力机 齿轮箱 故障检测 灰狼优化算法 变分模态分解 复合尺度规范化散布 长短期记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部