Operability problem of dividing wall column (DWC) raised by vapor split was investigated by numerically analyzing four cases defined by different compositions of a three-component mixture. DWCs were firstly designed f...Operability problem of dividing wall column (DWC) raised by vapor split was investigated by numerically analyzing four cases defined by different compositions of a three-component mixture. DWCs were firstly designed for each case by optimizing the vapor split to the two sides of the dividing wall, and then their feasibilities and total annual costs in operation were evaluated against different vapor split ratios. The analysis on the operability of the DWC for four cases was made based on two scenarios: (1) vapor split is shifted by the vapor resistance difference between the column sections in the two sides of the dividing wall and (2) the feed composition is changed. It was demonstrated that the positioning of the dividing wall and the decision on the vapor split may affect significantly the operability of a DWC.展开更多
Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillatio...Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillation columns(DWDCs)(e.g., the three main product compositions plus an impurity ratio in the intermediate product), which lowers terribly process flexibility and operability. In this paper, a feed thermal condition adjustment strategy, achieved by the installation of a pre-heater in feed pipeline, is employed to eliminate the black-hole problem and serve to enhance process flexibility and operability. Through the strong influence to the overall mass and energy balance of the DWDC, the feed thermal condition adjustment can alter the interlinking flows between the thermally coupled prefractionator and main distillation column and work effectively to coordinate their relationship. A DWDC separating a benzene, toluene, and o-xylene mixture is chosen to ascertain the feasibility of the philosophy proposed. The static and dynamic studies demonstrate that the feed thermal condition adjustment is an effective way to refine process design and can completely eliminate the black-hole problem and elevate consequently process flexibility and operability.展开更多
基金Supported by the State Key Fundamental Research Program(2012CB720500)
文摘Operability problem of dividing wall column (DWC) raised by vapor split was investigated by numerically analyzing four cases defined by different compositions of a three-component mixture. DWCs were firstly designed for each case by optimizing the vapor split to the two sides of the dividing wall, and then their feasibilities and total annual costs in operation were evaluated against different vapor split ratios. The analysis on the operability of the DWC for four cases was made based on two scenarios: (1) vapor split is shifted by the vapor resistance difference between the column sections in the two sides of the dividing wall and (2) the feed composition is changed. It was demonstrated that the positioning of the dividing wall and the decision on the vapor split may affect significantly the operability of a DWC.
基金Supported by the National Natural Science Foundation of China(21076015,21376018,21576014,21676011)
文摘Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillation columns(DWDCs)(e.g., the three main product compositions plus an impurity ratio in the intermediate product), which lowers terribly process flexibility and operability. In this paper, a feed thermal condition adjustment strategy, achieved by the installation of a pre-heater in feed pipeline, is employed to eliminate the black-hole problem and serve to enhance process flexibility and operability. Through the strong influence to the overall mass and energy balance of the DWDC, the feed thermal condition adjustment can alter the interlinking flows between the thermally coupled prefractionator and main distillation column and work effectively to coordinate their relationship. A DWDC separating a benzene, toluene, and o-xylene mixture is chosen to ascertain the feasibility of the philosophy proposed. The static and dynamic studies demonstrate that the feed thermal condition adjustment is an effective way to refine process design and can completely eliminate the black-hole problem and elevate consequently process flexibility and operability.